LandBench 1.0: A benchmark dataset and evaluation metrics for data-driven land surface variables prediction

水准点(测量) 计算机科学 深度学习 卷积神经网络 工具箱 一致性(知识库) 数据挖掘 中分辨率成像光谱仪 均方误差 机器学习 人工神经网络 人工智能 统计 数学 程序设计语言 地理 卫星 大地测量学 航空航天工程 工程类
作者
Qingliang Li,Cheng Zhang,Wei Shangguan,Zhongwang Wei,Hua Yuan,Jinlong Zhu,Xiaoning Li,Lu Li,Gan Li,Pingping Liu,Yongjiu Dai
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:243: 122917-122917 被引量:10
标识
DOI:10.1016/j.eswa.2023.122917
摘要

The advancements in deep learning methods have presented new opportunities and challenges for predicting land surface variables (LSVs) due to their similarity with computer sciences tasks. However, few researchers focus on the benchmark datasets for LSVs predictions that hampers fair comparisons of different data-driven deep learning models. Hence, we propose a LSVs benchmark dataset and prediction toolbox to boost research in data-driven LSVs modeling and improve the consistency of data-driven deep learning models for LSVs. LSVs benchmark dataset contains a large number of hydrology-related variables, such as global soil moisture, runoff, etc., which can verify the simulation of hydrological processes. Various global data from European Centre for Medium-Range Weather Forecasts reanalysis 5 (ERA5), ERA5-land, global gridded soil information (SoilGrid), soil moisture storage capacity (SMSC), and moderate-resolution imaging spectroradiometer (MODIS) datasets have been pre-processed into daily data at 0.5-, 1-, 2-, and 4-degree resolutions to facilitate their use in data-driven models. Simple statistical metrics, i.e., the root mean squared error and correlation coefficient, are chosen to evaluate the performance of different deep learning (DL) models, including convolutional neural network, long short-term memory and convolution long short-term memory models, with lead times of 1 and 5 days. A processed-based model serves as a physic baseline, soil moisture and surface sensible heat fluxes are taken as the target variables. The developed benchmark dataset and evaluation metrics for predicting LSVs using data-driven approaches, named as the LandBench toolbox, were implemented using Pytorch. This toolbox facilitates the reimplementation of existing methods, the development of novel predictive models, and the utilization of unified evaluation metrics. Additionally, the toolbox incorporates address mapping technology to enable high-resolution global predictions with constrained computing resources. We hope LandBench will not only serves as a standardized framework, fostering equitable model comparisons, but also provides indispensable data and a robust scientific foundation essential for advancing climate change research, disaster management, and sustainable development initiatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巴巴卡完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
英姑应助ooo娜采纳,获得10
1秒前
wsq完成签到 ,获得积分10
1秒前
机智毛豆完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
高桥凉介完成签到,获得积分10
4秒前
4秒前
不安青牛应助墨客采纳,获得10
5秒前
6秒前
巴巴卡发布了新的文献求助10
6秒前
孤独阑香发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
10秒前
魔幻的橘子完成签到 ,获得积分10
11秒前
小二郎应助陈明珠采纳,获得10
11秒前
ls发布了新的文献求助10
11秒前
奇点完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
章鱼哥完成签到 ,获得积分10
13秒前
sll完成签到 ,获得积分10
15秒前
qqq发布了新的文献求助10
15秒前
章鱼哥关注了科研通微信公众号
18秒前
白白发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
可爱的函函应助fmmuxiaoqiang采纳,获得10
22秒前
量子星尘发布了新的文献求助10
22秒前
龚涵山应助孤独阑香采纳,获得10
23秒前
25秒前
25秒前
27秒前
希望天下0贩的0应助uuuu采纳,获得10
29秒前
29秒前
30秒前
song发布了新的文献求助10
30秒前
cultromics完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助150
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4666247
求助须知:如何正确求助?哪些是违规求助? 4046947
关于积分的说明 12517364
捐赠科研通 3739565
什么是DOI,文献DOI怎么找? 2065248
邀请新用户注册赠送积分活动 1094813
科研通“疑难数据库(出版商)”最低求助积分说明 975124