已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Battery health diagnostics: Bridging the gap between academia and industry

桥接(联网) 计算机科学 大数据 备份 数据科学 系统工程 电池(电) 风险分析(工程) 工程类 计算机安全 数据挖掘 医学 数据库 功率(物理) 物理 量子力学
作者
Zhenghong Wang,Dapai Shi,Jingyuan Zhao,Zhengyu Chu,Dongxu Guo,Chika Eze,Xudong Qu,Yubo Lian,Andrew Burke
出处
期刊:eTransportation [Elsevier]
卷期号:19: 100309-100309 被引量:38
标识
DOI:10.1016/j.etran.2023.100309
摘要

Diagnostics of battery health, which encompass evaluation metrics such as state of health, remaining useful lifetime, and end of life, are critical across various applications, from electric vehicles to emergency backup systems and grid-scale energy storage. Diagnostic evaluations not only inform about the state of the battery system but also help minimize downtime, leading to reduced maintenance costs and fewer safety hazards. Researchers have made significant advancements using lab data and sophisticated algorithms. Nonetheless, bridging the gap between academic findings and their industrial application remains a significant hurdle. Herein, we initially highlight the importance of diverse data sources for achieving the prediction task. We then discuss academic breakthroughs, separating them into categories like mechanistic models, data-driven machine learning, and multi-model fusion techniques. Inspired by these progressions, several studies focus on the real-world battery diagnostics using field data, which are subsequently analyzed and discussed. We emphasize the challenges associated with translating these lab-focused models into dependable, field-applicable predictions. Finally, we investigate the frontier of battery health diagnostics, shining a light on innovative methodologies designed for the ever-changing energy sector. It's crucial to harmonize tangible, real-world data with emerging technology, such as cloud-based big data, physics-integrated deep learning, immediate model verification, and continuous lifelong machine learning. Bridging the gap between laboratory research and field application is essential for genuine technological progress, ensuring that battery systems are effortlessly integrated into all-encompassing energy solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无名之辈完成签到,获得积分10
刚刚
刚刚
柳惊完成签到,获得积分10
1秒前
莎啦啦发布了新的文献求助10
2秒前
2秒前
河鲸发布了新的文献求助30
2秒前
2秒前
孙文杰发布了新的文献求助10
3秒前
科研通AI6应助可靠安筠采纳,获得10
5秒前
Gu完成签到,获得积分10
5秒前
eleven完成签到,获得积分20
5秒前
不是风动完成签到 ,获得积分10
6秒前
6秒前
小王发布了新的文献求助10
6秒前
科科完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
9秒前
尊敬的凌晴完成签到 ,获得积分10
9秒前
迅速雅阳关注了科研通微信公众号
10秒前
Nthorn_rone发布了新的文献求助10
10秒前
122319发布了新的文献求助10
11秒前
czcmh应助小王采纳,获得30
13秒前
Jackie应助涂烁采纳,获得10
14秒前
iris发布了新的文献求助30
14秒前
无奈的之云完成签到,获得积分10
14秒前
打打应助利物鸟贝拉采纳,获得10
15秒前
1212发布了新的文献求助10
16秒前
十三完成签到 ,获得积分10
17秒前
榆果子发布了新的文献求助20
17秒前
852应助122319采纳,获得10
20秒前
孤独的友容完成签到,获得积分10
22秒前
arui完成签到,获得积分10
22秒前
23秒前
natmed应助慕晴采纳,获得10
24秒前
布丁宝完成签到,获得积分20
25秒前
myelin完成签到,获得积分10
26秒前
xia发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521964
求助须知:如何正确求助?哪些是违规求助? 4613170
关于积分的说明 14537483
捐赠科研通 4550723
什么是DOI,文献DOI怎么找? 2493886
邀请新用户注册赠送积分活动 1474924
关于科研通互助平台的介绍 1446301