CiTST-AdderNets: Computing in Toggle Spin Torques MRAM for Energy-Efficient AdderNets

磁阻随机存取存储器 计算机科学 高效能源利用 扭矩 卷积神经网络 并行计算 旋转扭矩传递 冯·诺依曼建筑 加法器 计算机硬件 CMOS芯片 计算机工程 电子工程 电气工程 人工智能 工程类 磁场 随机存取存储器 物理 磁化 量子力学 热力学 操作系统
作者
Lichuan Luo,Erya Deng,Dijun Liu,Zhen Wang,Weiliang Huang,He Zhang,Xiao Liu,Jinyu Bai,Junzhan Liu,Youguang Zhang,Kang Wang
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers [Institute of Electrical and Electronics Engineers]
卷期号:71 (3): 1130-1143
标识
DOI:10.1109/tcsi.2023.3343081
摘要

Recently, Adder Neural Networks (AdderNets) have gained widespread attention as an alternative to traditional Convolutional Neural Networks (CNNs) for deep learning tasks. AdderNets use lightweight addition operations to replace multiplication and accumulation (MAC) operations, but can keep almost the same accuracy compared to other CNNs. Nevertheless, challenges still exist with regards to hardware resources, power consumption, and communication bandwidth, primarily due to the ‘Von-Neumann bottlenecks’. However, computing-in-memory (CIM) architecture based on magnetic random-access memory (MRAM) has great potential for edge DNN implementation. In this paper, we propose a novel CIM paradigm using a novel Toggle-Spin-Torques (TST) driven MRAM for energy-efficient AdderNets (called CiTST_AdderNets). In CiTST_AdderNets, MRAM is driven by the interplay of the field-free spin orbit torque (SOT) effect and the spin transfer torque (STT) effect, which offers a fascinating prospect for energy efficiency and speed. Furthermore, a novel CIM paradigm is proposed to implement the dominating subtraction and sum operations in AdderNets, reducing data transfer and the related energy. Meanwhile, a highly parallel array structure integrating computation and storage is designed to support CiTST_AdderNets. In addition, a mapping strategy is proposed to efficiently map the convolution layer on the array. Fully connected layers can also be efficiently computed. The CiTST-AdderNets macro is designed by using a 65-nm CMOS process. Results show that our CiTST-AdderNets consumes about 1.65 mJ, 9.29 mJ, and 42.46 mJ for running VGG8, ResNet-50, and ResNet-18 respectively at 8-bit fixed-point precision. Compared to state-of-the-art platforms, our macro achieves an energy efficiency improvement of 1.45 x to 66.78 x.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
困困困发布了新的文献求助10
2秒前
勤奋的姒完成签到 ,获得积分10
3秒前
105完成签到,获得积分10
3秒前
duuuuuu发布了新的文献求助10
4秒前
kimikoi发布了新的文献求助10
4秒前
Freeman0721发布了新的文献求助10
5秒前
5秒前
5秒前
999999发布了新的文献求助10
6秒前
7秒前
ecnu搬砖人发布了新的文献求助10
7秒前
大米完成签到,获得积分10
8秒前
8秒前
困困困完成签到,获得积分10
9秒前
慕青应助大脸萌采纳,获得10
12秒前
平常的毛豆应助wangwang采纳,获得10
13秒前
肆陆发布了新的文献求助10
14秒前
李健的小迷弟应助cj采纳,获得10
14秒前
Freeman0721完成签到,获得积分10
14秒前
14秒前
Seven完成签到,获得积分10
17秒前
kimikoi完成签到,获得积分10
18秒前
qczgzly发布了新的文献求助10
20秒前
阿航完成签到,获得积分10
21秒前
快来拾糖完成签到 ,获得积分10
25秒前
奈克罗普陀西斯完成签到,获得积分10
25秒前
qczgzly完成签到,获得积分10
26秒前
城南她似海完成签到 ,获得积分10
26秒前
上官若男应助Qzy采纳,获得10
27秒前
Orange应助liujinjin采纳,获得10
28秒前
顾矜应助duuuuuu采纳,获得10
31秒前
丘比特应助huihui采纳,获得10
32秒前
32秒前
34秒前
35秒前
36秒前
Ronnie完成签到,获得积分10
37秒前
40秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793328
求助须知:如何正确求助?哪些是违规求助? 3338065
关于积分的说明 10288573
捐赠科研通 3054717
什么是DOI,文献DOI怎么找? 1676128
邀请新用户注册赠送积分活动 804144
科研通“疑难数据库(出版商)”最低求助积分说明 761757