Intelligent Trajectory Design and Charging Scheduling in Wireless Rechargeable Sensor Networks With Obstacles

计算机科学 无线传感器网络 强化学习 调度(生产过程) 无线 灵活性(工程) 最大化 分布式计算 能源消耗 效用最大化 移动设备 弹道 实时计算 计算机网络 数学优化 人工智能 电信 统计 生态学 物理 数学 数理经济学 天文 生物 操作系统
作者
Xiuling Zhang,Riheng Jia,Quanjun Yin,Zhonglong Zheng,Minglu Li
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:23 (9): 8664-8679 被引量:9
标识
DOI:10.1109/tmc.2024.3350075
摘要

Wireless rechargeable sensor networks (WRSNs) are promising in maintaining sustainable large-area monitoring tasks. Mobile chargers (MCs) are commonly used in WRSNs to replenish energy to nodes due to its flexibility and easy maintenance. Most existing works on WRSNs focus on designing offline or model-based online charging methods, which need the exact system information to conduct the optimization. However, in practical WRSNs, the exact system information such as the nodes' locations and energy consumption rates may not be easily accessible to the optimizer due to their unpredictability and high dynamics. Thus, in this work, we jointly optimize the MC's trajectory design and charging scheduling in a general and practical WRSN with inaccessibility to the exact system information, such that the charging utility of the MC is maximized. To address this problem, we introduce the model-free reinforcement learning (RL) technique, which enables the MC to learn to jointly optimize its moving trajectory and charging scheduling by interacting with the environment and tracking feedback signals from nodes and obstacles in real time. Specifically, we develop a soft actor-critic based mobile security policy intervened algorithm (SAC-MSPI) based on a novel safe RL framework, which maximizes the MC's charging utility while maintaining the safe movement (not hitting obstacles) for the MC during the entire charging period. Extensive evaluation results show that the proposed SAC-MSPI algorithm outperforms existing main RL solutions and traditional algorithms with respect to the charging utility maximization as well as the collision avoidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助Ethereal采纳,获得10
刚刚
叶世玉完成签到,获得积分10
刚刚
1秒前
可爱的妙海完成签到,获得积分10
2秒前
努力学习完成签到,获得积分10
3秒前
暖暖发布了新的文献求助10
4秒前
堪远航完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
李健应助lulu采纳,获得10
6秒前
6秒前
浮游应助KJQ采纳,获得10
6秒前
畅快从雪发布了新的文献求助10
7秒前
7秒前
7秒前
安静海莲发布了新的文献求助10
7秒前
博伦llll发布了新的文献求助10
7秒前
8秒前
于鱼余完成签到,获得积分10
8秒前
chen发布了新的文献求助10
9秒前
大力半鬼完成签到,获得积分10
10秒前
13秒前
13秒前
13秒前
Messi发布了新的文献求助10
13秒前
Chen发布了新的文献求助10
13秒前
展希希发布了新的文献求助10
14秒前
14秒前
我是老大应助安静海莲采纳,获得10
15秒前
Jasper应助陈智贤采纳,获得10
16秒前
18秒前
哼哼哒完成签到,获得积分10
19秒前
半颗糖完成签到,获得积分10
19秒前
19秒前
超超zzZ发布了新的文献求助10
20秒前
风趣的小夏关注了科研通微信公众号
20秒前
20秒前
lulu发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5170420
求助须知:如何正确求助?哪些是违规求助? 4361183
关于积分的说明 13578837
捐赠科研通 4208380
什么是DOI,文献DOI怎么找? 2308143
邀请新用户注册赠送积分活动 1307537
关于科研通互助平台的介绍 1254343