预处理程序
数学
系数矩阵
离散化
基质(化学分析)
稳健性(进化)
应用数学
条件编号
理论(学习稳定性)
数学分析
特征向量
线性系统
物理
计算机科学
材料科学
机器学习
基因
复合材料
量子力学
化学
生物化学
作者
Shi-Ping Tang,Ai‐Li Yang,Yujiang Wu Yujiang Wu
标识
DOI:10.4208/jcm.2203-m2020-0192
摘要
Based on the Crank-Nicolson and the weighted and shifted Grünwald operators, we present an implicit difference scheme for the Riesz space fractional reaction-dispersion equations and also analyze the stability and the convergence of this implicit difference scheme.However, after estimating the condition number of the coefficient matrix of the discretized scheme, we find that this coefficient matrix is ill-conditioned when the spatial mesh-size is sufficiently small.To overcome this deficiency, we further develop an effective banded M -matrix splitting preconditioner for the coefficient matrix.Some properties of this preconditioner together with its preconditioning effect are discussed.Finally, Numerical examples are employed to test the robustness and the effectiveness of the proposed preconditioner.
科研通智能强力驱动
Strongly Powered by AbleSci AI