亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In situ quality monitoring in direct energy deposition process using co-axial process zone imaging and deep contrastive learning

材料科学 沉积(地质) 过程(计算) 卷积神经网络 测距 多孔性 微观结构 人工智能 机械工程 工艺工程 计算机科学 复合材料 电信 生物 操作系统 工程类 古生物学 沉积物
作者
Vigneashwara Pandiyan,Di Cui,Tri Le‐Quang,Pushkar Deshpande,Kilian Wasmer,Sergey Shevchik
出处
期刊:Journal of Manufacturing Processes [Elsevier BV]
卷期号:81: 1064-1075 被引量:24
标识
DOI:10.1016/j.jmapro.2022.07.033
摘要

Many strategic industrial sectors prefer Directed Energy Deposition (DED) to other Additive Manufacturing (AM) technologies due to the high material deposition and build rates. However, the inadvertent formation of defects such as porosity, micro-cracks and microstructure anomalies hinders its adoption in industries that require specific mechanical and microstructural properties. These defects are caused by undesirable fluctuations in process conditions such as material flow rate, laser power, melt pool dynamics, environment gas composition, temperature gradients. This research proposes in situ quality monitoring of DED using images of process zone and contrastive learning-based Convolutional Neural Network (CNN). Experiments included deposition of titanium powder (Cp-Ti, grade 1) with the particle size ranging between 45 and 106 μm on the base plate (99.6 % Ti6Al4V grade 1), forming a cube geometry. The process parameters were tuned to achieve six quality grades. The video of the process zone was recorded co-axially to the laser beam during the entire manufacturing, which was eventually used as the input to train CNN's based on contrastive losses. An in situ monitoring strategy for classifying the different quality grades was demonstrated in a supervised and semi-supervised manner, with an accuracy ranging between 89 % and 97 %. The performance of the developed framework was compared to an alternative clustering technique, namely t-distributed stochastic neighbour embedding, justifying the efficiency of our approach. The developed methodology demonstrates the possibility to track workpiece manufacturing quality using simple CCD cameras with minimum interventions on the commercial machines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助奋斗水香采纳,获得10
22秒前
1分钟前
王振强发布了新的文献求助10
1分钟前
研友_ngqoE8完成签到,获得积分10
1分钟前
彭于晏应助polaris采纳,获得30
1分钟前
学术小白完成签到,获得积分10
1分钟前
1分钟前
奋斗水香发布了新的文献求助10
1分钟前
MchemG给啊哭的求助进行了留言
1分钟前
2分钟前
misha完成签到 ,获得积分10
2分钟前
科研通AI5应助polaris采纳,获得30
3分钟前
3分钟前
polaris发布了新的文献求助30
3分钟前
老石完成签到 ,获得积分10
4分钟前
4分钟前
polaris发布了新的文献求助30
4分钟前
微卫星不稳定完成签到 ,获得积分10
5分钟前
5分钟前
Simpson完成签到 ,获得积分10
5分钟前
zheyu发布了新的文献求助20
5分钟前
MchemG完成签到,获得积分0
5分钟前
科研通AI5应助polaris采纳,获得30
6分钟前
我行完成签到 ,获得积分10
6分钟前
QCB完成签到 ,获得积分10
7分钟前
沿途有你完成签到 ,获得积分10
7分钟前
8分钟前
polaris发布了新的文献求助30
8分钟前
Simone完成签到,获得积分10
9分钟前
流水z完成签到 ,获得积分10
9分钟前
polaris完成签到,获得积分10
9分钟前
追风少年完成签到 ,获得积分10
10分钟前
Owen应助魏建威采纳,获得10
10分钟前
科研大白完成签到,获得积分10
11分钟前
12分钟前
13分钟前
魏建威发布了新的文献求助10
13分钟前
WYK完成签到 ,获得积分10
13分钟前
jyy应助科研通管家采纳,获得10
13分钟前
科研通AI2S应助科研通管家采纳,获得10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4485127
求助须知:如何正确求助?哪些是违规求助? 3940779
关于积分的说明 12220833
捐赠科研通 3596377
什么是DOI,文献DOI怎么找? 1977948
邀请新用户注册赠送积分活动 1014927
科研通“疑难数据库(出版商)”最低求助积分说明 908122