In situ quality monitoring in direct energy deposition process using co-axial process zone imaging and deep contrastive learning

材料科学 沉积(地质) 过程(计算) 卷积神经网络 测距 多孔性 微观结构 人工智能 机械工程 工艺工程 计算机科学 复合材料 电信 生物 操作系统 工程类 古生物学 沉积物
作者
Vigneashwara Pandiyan,Di Cui,Tri Le‐Quang,Pushkar Deshpande,Kilian Wasmer,Sergey Shevchik
出处
期刊:Journal of Manufacturing Processes [Elsevier BV]
卷期号:81: 1064-1075 被引量:24
标识
DOI:10.1016/j.jmapro.2022.07.033
摘要

Many strategic industrial sectors prefer Directed Energy Deposition (DED) to other Additive Manufacturing (AM) technologies due to the high material deposition and build rates. However, the inadvertent formation of defects such as porosity, micro-cracks and microstructure anomalies hinders its adoption in industries that require specific mechanical and microstructural properties. These defects are caused by undesirable fluctuations in process conditions such as material flow rate, laser power, melt pool dynamics, environment gas composition, temperature gradients. This research proposes in situ quality monitoring of DED using images of process zone and contrastive learning-based Convolutional Neural Network (CNN). Experiments included deposition of titanium powder (Cp-Ti, grade 1) with the particle size ranging between 45 and 106 μm on the base plate (99.6 % Ti6Al4V grade 1), forming a cube geometry. The process parameters were tuned to achieve six quality grades. The video of the process zone was recorded co-axially to the laser beam during the entire manufacturing, which was eventually used as the input to train CNN's based on contrastive losses. An in situ monitoring strategy for classifying the different quality grades was demonstrated in a supervised and semi-supervised manner, with an accuracy ranging between 89 % and 97 %. The performance of the developed framework was compared to an alternative clustering technique, namely t-distributed stochastic neighbour embedding, justifying the efficiency of our approach. The developed methodology demonstrates the possibility to track workpiece manufacturing quality using simple CCD cameras with minimum interventions on the commercial machines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠檬水发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
我是老大应助xiaoxiao采纳,获得10
3秒前
4秒前
4秒前
a18336181581完成签到,获得积分10
4秒前
虚拟的惜筠完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
7秒前
8秒前
小叶发布了新的文献求助10
8秒前
orixero应助YY采纳,获得10
9秒前
9秒前
zgnb发布了新的文献求助10
9秒前
9秒前
10秒前
风趣的念薇完成签到,获得积分20
11秒前
852应助一一采纳,获得10
11秒前
xiaoyu完成签到,获得积分10
11秒前
13秒前
Lucas应助zgnb采纳,获得10
13秒前
王欣瑶发布了新的文献求助10
15秒前
15秒前
柠檬水完成签到,获得积分10
16秒前
17秒前
19秒前
19秒前
21秒前
21秒前
23秒前
24秒前
一一发布了新的文献求助10
24秒前
26秒前
28秒前
酷波er应助饭粒采纳,获得10
28秒前
29秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
Magnum Contact Sheets 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897154
求助须知:如何正确求助?哪些是违规求助? 3441049
关于积分的说明 10819649
捐赠科研通 3165972
什么是DOI,文献DOI怎么找? 1749137
邀请新用户注册赠送积分活动 845123
科研通“疑难数据库(出版商)”最低求助积分说明 788429