烧蚀
房性心动过速
心房颤动
医学
导管消融
心脏病学
再入
内科学
心动过速
心脏外科
中庭(建筑)
电生理学
作者
Hao Wang,Siqi Xi,Jindong Chen,Tian Gan,Weiye Huang,Ben He,Liang Zhao
摘要
Background: The mechanisms of atrial tachycardia (AT) related to the left atrial anterior wall (LAAW) are complex and can be challenging to map in patients after catheter ablation for atrial fibrillation (AF) or cardiac surgery. We aimed to investigate the electrophysiological characteristics AT and to devise an ablation strategy. Methods and Results: We identified 31 scar-related LAAW reentrant ATs in 22 patients after catheter ablation for AF or cardiac surgery. Activation maps of the left atrium (LA) or both atria were obtained using a high-density mapping system, and the precise mechanism and critical area for each AT were analyzed. Patients were followed up regularly in a clinic. After analyzing the activation and propagation of each AT, the scar-related LAAW ATs were classified into three types, based on mechanisms related to: (1) LAAW conduction gap(s) in 19 LA macro-reentrant ATs; (2) LAAW epicardial connection(s) in 11 LA or bi-atrial ATs; and (3) LAAW local micro-reentry in 1 LAAW AT. Multiple ATs were identified in seven patients. Effective ablation (termination or circuit change of AT) was obtained in 30 ATs by targeting the critical area identified by the mapping system. During 16.0 ± 7.6 months follow-up, recurrent AT occurred in two patients. Conclusions: Three mechanisms of scar-related AT of LAAW were identified, most of which were related to LAAW conduction gaps. Notably, epicardial AT or bi-atrial AT comprised a nonnegligible proportion. A high-density mapping system could make it possible to determine the accurate mechanism of AT and serve as a guide following ablation.
科研通智能强力驱动
Strongly Powered by AbleSci AI