Single-Atom Ru Biomimetic Nanozyme for the Electrochemical Sensing of Hydrogen Peroxide

过氧化氢 电化学 化学 氢原子 光化学 Atom(片上系统) 组合化学 纳米技术 材料科学 生物化学 电极 有机化学 计算机科学 物理化学 烷基 嵌入式系统
作者
Juan Jia,Yu Fan,Eslam M. Hamed,Sam Fong Yau Li,Li Zhu,Baoyue Cao,Yanyan Zhu
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (10): 11984-11994 被引量:5
标识
DOI:10.1021/acsanm.4c01587
摘要

A rational design of high-efficiency single atoms represents a desirable goal for the construction of efficient electrochemical devices. Nevertheless, their activity is constricted by the exposure of single atoms to reactants. Herein, novel ruthenium (Ru) single atom anchored on graphene frameworks (GFs) that feature interconnected porous structures (defined as Ru SA/GFs) is synthesized through a one-step photoreduction strategy. Ru SA/GFs possess additional structural merits that favor promoting reactant transport and maximizing the efficacy of single atoms, which manifest notable amplified electrocatalytic-reduction activity toward hydrogen peroxide (H2O2) than that of Ru nanoparticles/GFs, indicating the remarkable biomimetic nanozyme-like activity of Ru SA/GFs toward H2O2. Density functional theory (DFT) calculations reveal that Ru SA/GFs with atomically dispersed Ru significantly facilitate the electrochemical reduction efficiency toward H2O2. In addition, a sensitive Ru SA/GFs-based electrochemical sensing platform for the detection of H2O2 with a low detection limit of 0.063 μM is developed and demonstrated. This work not only exploits an innovative approach to synthesize single-atom Ru anchored on GFs for the construction of an efficient biomimetic H2O2 electrochemical sensor but also contributes to the broader utilization of Ru single atom in the advancement of diverse high-performance electrochemical devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助核桃酥采纳,获得10
刚刚
2秒前
爆米花应助想不想采纳,获得10
2秒前
xibaluma发布了新的文献求助10
2秒前
5秒前
安详凡发布了新的文献求助10
5秒前
赵一丁完成签到,获得积分10
5秒前
5秒前
平淡夜绿发布了新的文献求助10
9秒前
烟花应助你听风在吹采纳,获得10
10秒前
12秒前
12秒前
12秒前
牧鱼完成签到,获得积分10
13秒前
13秒前
15秒前
无风发布了新的文献求助10
16秒前
暖暖发布了新的文献求助10
17秒前
wangayting发布了新的文献求助10
18秒前
18秒前
左丘映易完成签到,获得积分0
20秒前
核桃酥发布了新的文献求助10
20秒前
xiao_niu完成签到,获得积分10
21秒前
想不想发布了新的文献求助10
22秒前
23秒前
科研通AI5应助Warming采纳,获得10
23秒前
毅青6796完成签到,获得积分10
24秒前
Fqdgest完成签到,获得积分10
24秒前
qiao应助lizhiqian2024采纳,获得10
24秒前
情怀应助lizhiqian2024采纳,获得10
24秒前
小丫头发布了新的文献求助10
25秒前
lz完成签到,获得积分10
25秒前
隐形曼青应助柚哦采纳,获得10
26秒前
默默惋清完成签到,获得积分10
26秒前
HEIHEI完成签到,获得积分20
26秒前
26秒前
27秒前
27秒前
athruncx发布了新的文献求助10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781731
求助须知:如何正确求助?哪些是违规求助? 3327303
关于积分的说明 10230369
捐赠科研通 3042188
什么是DOI,文献DOI怎么找? 1669800
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792