Computer Vision Foundation Models in Endoscopy: Proof of Concept in Oropharyngeal Cancer

接收机工作特性 人工智能 判别式 支持向量机 计算机科学 耳鼻咽喉科 变压器 精确性和召回率 F1得分 模式识别(心理学) 机器学习 医学 外科 工程类 电压 电气工程
作者
Alberto Paderno,Anita Rau,Nikita Bedi,Paolo Bossi,Giuseppe Mercante,Cesare Piazza,F. Christopher Holsinger
出处
期刊:Laryngoscope [Wiley]
被引量:1
标识
DOI:10.1002/lary.31534
摘要

Objectives To evaluate the performance of vision transformer‐derived image embeddings for distinguishing between normal and neoplastic tissues in the oropharynx and to investigate the potential of computer vision (CV) foundation models in medical imaging. Methods Computational study using endoscopic frames with a focus on the application of a self‐supervised vision transformer model (DINOv2) for tissue classification. High‐definition endoscopic images were used to extract image patches that were then normalized and processed using the DINOv2 model to obtain embeddings. These embeddings served as input for a standard support vector machine (SVM) to classify the tissues as neoplastic or normal. The model's discriminative performance was validated using an 80–20 train‐validation split. Results From 38 endoscopic NBI videos, 327 image patches were analyzed. The classification results in the validation cohort demonstrated high accuracy (92%) and precision (89%), with a perfect recall (100%) and an F1‐score of 94%. The receiver operating characteristic (ROC) curve yielded an area under the curve (AUC) of 0.96. Conclusion The use of large vision model‐derived embeddings effectively differentiated between neoplastic and normal oropharyngeal tissues. This study supports the feasibility of employing CV foundation models like DINOv2 in the endoscopic evaluation of mucosal lesions, potentially augmenting diagnostic precision in Otorhinolaryngology. Level of Evidence 4 Laryngoscope , 2024

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助刘子怡采纳,获得10
刚刚
科研通AI6应助冷傲猫咪采纳,获得10
1秒前
1秒前
1秒前
1秒前
慕青应助Red-Rain采纳,获得10
2秒前
2秒前
2秒前
saywhy完成签到 ,获得积分10
2秒前
3秒前
走心君完成签到,获得积分10
4秒前
桐桐应助queer采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
hcx完成签到,获得积分10
5秒前
Enso完成签到 ,获得积分10
6秒前
fei关闭了fei文献求助
6秒前
shi关注了科研通微信公众号
7秒前
Ava应助月亮采纳,获得10
8秒前
smile完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
tangli完成签到 ,获得积分10
11秒前
11秒前
彩虹捕手发布了新的文献求助10
12秒前
BowieHuang应助谦让的小姜采纳,获得10
13秒前
verymiao完成签到 ,获得积分10
13秒前
丘比特应助YY采纳,获得10
13秒前
丘比特应助929采纳,获得30
13秒前
Red-Rain发布了新的文献求助10
14秒前
来来完成签到,获得积分10
15秒前
谁煮花生完成签到,获得积分10
15秒前
15秒前
香菜完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536258
求助须知:如何正确求助?哪些是违规求助? 4623988
关于积分的说明 14590229
捐赠科研通 4564430
什么是DOI,文献DOI怎么找? 2501723
邀请新用户注册赠送积分活动 1480520
关于科研通互助平台的介绍 1451794