Explaining the Mechanism of Multiscale Groundwater Drought Events: A New Perspective From Interpretable Deep Learning Model

地下水 降水 比例(比率) 环境科学 透视图(图形) 时间尺度 水文学(农业) 地质学 地理 生态学 计算机科学 气象学 地图学 人工智能 生物 岩土工程
作者
Hejiang Cai,Haiyun Shi,Zhaoqiang Zhou,Suning Liu,Vladan Babovic
出处
期刊:Water Resources Research [Wiley]
卷期号:60 (7) 被引量:10
标识
DOI:10.1029/2023wr035139
摘要

Abstract This study presents a new approach to understand the causes of groundwater drought events with interpretable deep learning (DL) models. As prerequisites, accurate long short‐term memory (LSTM) models for simulating groundwater are built for 16 regions representing three types of spatial scales in the southeastern United States, and standardized groundwater index is applied to identify 233 groundwater drought events. Two interpretation methods, expected gradients (EG) and additive decomposition (AD), are adopted to decipher the DL‐captured patterns and inner workings of LSTM networks. The EG results show that: (a) temperature‐related features were the primary drivers of large‐scale groundwater droughts, with their importance increasing from 56.1% to 63.1% as the drought events approached from 6 months to 15 days. Conversely, precipitation‐related features were found to be the dominant factors in the formation of groundwater drought in small‐scale catchments, with the overall importance ranging from 59.8% to 53.3%; (b) Seasonal variations in the importance of temperature‐related factors are inversely related between large and small spatial scales, being more significant in summer for larger regions and in winter for catchments; and (c) temperature‐related factors exhibited an overall “trigger effect” on causing groundwater drought events in the studying areas. The AD method unveiled how the LSTM network behaved differently in retaining and discarding information when emulating different groundwater droughts. In summary, this study provides a new perspective for the causes of groundwater drought events and highlights the potential and prospect of interpretable DL in enhancing our understanding of hydrological processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助酷炫纸鹤采纳,获得10
1秒前
Ava应助好大一只小坏蛋采纳,获得30
1秒前
艾瑞克发布了新的文献求助10
2秒前
LLL完成签到,获得积分10
2秒前
火火发布了新的文献求助10
2秒前
3秒前
情怀应助byyyy采纳,获得10
3秒前
3秒前
3秒前
4秒前
wanci应助123yaoyao采纳,获得10
4秒前
6秒前
6秒前
LU完成签到,获得积分10
6秒前
科研小白发布了新的文献求助10
7秒前
乐乐应助赫山柳采纳,获得10
8秒前
仲半邪发布了新的文献求助10
8秒前
TimFang发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
King16发布了新的文献求助10
10秒前
zyl完成签到,获得积分10
10秒前
孙冲发布了新的文献求助10
10秒前
希望天下0贩的0应助WWW采纳,获得10
11秒前
FashionBoy应助soft采纳,获得10
11秒前
11秒前
11秒前
11秒前
Adrian完成签到,获得积分10
12秒前
12秒前
123yaoyao发布了新的文献求助10
13秒前
林俊杰完成签到,获得积分10
13秒前
14秒前
可爱的函函应助Adrian采纳,获得10
15秒前
15秒前
酷炫纸鹤发布了新的文献求助10
17秒前
19秒前
Lucas应助祖丽采纳,获得10
19秒前
清水小镇发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4590079
求助须知:如何正确求助?哪些是违规求助? 4005062
关于积分的说明 12400100
捐赠科研通 3682035
什么是DOI,文献DOI怎么找? 2029370
邀请新用户注册赠送积分活动 1062987
科研通“疑难数据库(出版商)”最低求助积分说明 948589