Enhanced detection of glucose with carbon quantum dot-modified copper oxide: Computational insight and machine learning modeling of electrochemical sensing

量子点 碳量子点 电化学 氧化铜 氧化物 材料科学 纳米技术 碳纤维 化学 冶金 电极 复合材料 物理化学 复合数
作者
Naeem Ullah khan,Bharat Prasad Sharma,Sadam Hussain Tumrani,Mehvish Zahoor,Razium Ali Soomro,Tarık Küçükdeniz,Selcan Karakuş,Eman Ramadan Elsharkawy,Jun Lu,Salah M. El‐Bahy,Zeinhom M. El‐Bahy
出处
期刊:Microchemical Journal [Elsevier BV]
卷期号:204: 110936-110936 被引量:11
标识
DOI:10.1016/j.microc.2024.110936
摘要

Poor conductivity and surface passivation pose critical challenges in metal oxide structures during their application for non-enzymatic oxidation. To address this, we systematically employed in-situ deposition of carbon-quantum dots (C-dots) over copper oxide (CuO), enhancing its electrocatalytic properties for direct non-enzymatic glucose oxidation in alkaline media. The process involved the systematic deposition of varying wt.% of C-dots onto the CuO nanostructure. The electrode's sensing capability was assessed through CV, DPV, and amperometric measurements, evaluating its suitability in high (0.1 to 0.85 mM) and low glucose concentration levels (15 to 225 nM) with a representative LOD of 1.4 nM (17142.86 µA mM−1 cm−2). Additionally, the CuO-Cdot-16.6 protective coating allowed for long-term working capability, with chronoamperometric measurement confirming a 99 % current retention ability compared to pristine CuO's 39 % retention during 3500 s of continuous measurement. DFT calculations further confirmed the efficacy of CuO substrate as a scaffold for glucose adsorption. The stable CuO-glucose complex formed due to energetically favorable conditions further strengthens its potential as a sensor. Successful recoveries of spiked glucose serum samples validated the sensor's practical usage in complex matrices. Moreover, Machine learning was also adopted to validate the accuracy of glucose detection, where artificial neural network (ANN) model emerged as a suitable model to interpret the DPV derived data relationships, adding in sensor working capability and promising its future application in precision/intelligent healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨林发布了新的文献求助10
1秒前
1秒前
归途完成签到,获得积分10
1秒前
2秒前
犹豫半兰完成签到,获得积分10
2秒前
3秒前
4秒前
yeye完成签到,获得积分10
4秒前
5秒前
JT完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
mz完成签到 ,获得积分10
5秒前
xiaoluan发布了新的文献求助20
6秒前
执意完成签到 ,获得积分10
6秒前
yet完成签到,获得积分10
6秒前
超级漫漫发布了新的文献求助10
7秒前
小怪兽琉璃泪完成签到,获得积分10
7秒前
xiaohaitao完成签到,获得积分10
8秒前
clxgene发布了新的文献求助30
8秒前
朴素的不乐完成签到 ,获得积分10
9秒前
hua发布了新的文献求助10
9秒前
清脆如娆完成签到 ,获得积分10
10秒前
柠觉呢完成签到 ,获得积分10
11秒前
12秒前
fubq0321完成签到 ,获得积分10
12秒前
HwH发布了新的文献求助10
13秒前
酷炫的大碗完成签到,获得积分10
14秒前
WYB完成签到 ,获得积分10
15秒前
lk完成签到,获得积分10
15秒前
我不发布了新的文献求助10
15秒前
16秒前
万椿完成签到,获得积分10
16秒前
孤独曲奇完成签到,获得积分10
17秒前
18秒前
666完成签到 ,获得积分10
19秒前
huche发布了新的文献求助10
19秒前
ll完成签到 ,获得积分10
22秒前
23秒前
Itazu完成签到,获得积分10
23秒前
ZHUYANYAN完成签到,获得积分10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Comparative Efficacy of Advanced Therapies for Management of Moderate-to-Severe Crohn's Disease: 2025 AGA Evidence Synthesis 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5129289
求助须知:如何正确求助?哪些是违规求助? 4331728
关于积分的说明 13495473
捐赠科研通 4168093
什么是DOI,文献DOI怎么找? 2284793
邀请新用户注册赠送积分活动 1285813
关于科研通互助平台的介绍 1226686