Electrochemically-driven actuators: from materials to mechanisms and from performance to applications

执行机构 纳米技术 领域(数学) 机器人学 航空航天 软机器人 机械工程 材料科学 控制工程 计算机科学 工程类 机器人 航空航天工程 人工智能 数学 纯数学
作者
Lixue Yang,Yiyao Zhang,Wenting Cai,Junlong Tan,Heather Hansen,Hongzhi Wang,Yan Chen,Meifang Zhu,Jiuke Mu
出处
期刊:Chemical Society Reviews [Royal Society of Chemistry]
卷期号:53 (11): 5956-6010 被引量:8
标识
DOI:10.1039/d3cs00906h
摘要

Soft actuators, pivotal for converting external energy into mechanical motion, have become increasingly vital in a wide range of applications, from the subtle engineering of soft robotics to the demanding environments of aerospace exploration. Among these, electrochemically-driven actuators (EC actuators), are particularly distinguished by their operation through ion diffusion or intercalation-induced volume changes. These actuators feature notable advantages, including precise deformation control under electrical stimuli, freedom from Carnot efficiency limitations, and the ability to maintain their actuated state with minimal energy use, akin to the latching state in skeletal muscles. This review extensively examines EC actuators, emphasizing their classification based on diverse material types, driving mechanisms, actuator configurations, and potential applications. It aims to illuminate the complicated driving mechanisms of different categories, uncover their underlying connections, and reveal the interdependencies among materials, mechanisms, and performances. We conduct an in-depth analysis of both conventional and emerging EC actuator materials, casting a forward-looking lens on their trajectories and pinpointing areas ready for innovation and performance enhancement strategies. We also navigate through the challenges and opportunities within the field, including optimizing current materials, exploring new materials, and scaling up production processes. Overall, this review aims to provide a scientifically robust narrative that captures the current state of EC actuators and sets a trajectory for future innovation in this rapidly advancing field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小西米完成签到,获得积分10
1秒前
jjj应助actor2006采纳,获得50
3秒前
我是老大应助单纯灵松采纳,获得10
3秒前
zho发布了新的文献求助10
4秒前
5秒前
5秒前
Jally完成签到,获得积分10
5秒前
上官若男应助彪壮的颦采纳,获得10
6秒前
7秒前
9秒前
大模型应助落寞小蘑菇采纳,获得10
10秒前
Will完成签到,获得积分10
10秒前
CipherSage应助秋秋秋采纳,获得10
11秒前
13秒前
00发布了新的文献求助10
13秒前
黄辉冯发布了新的文献求助10
15秒前
万能图书馆应助cccw采纳,获得10
16秒前
秋秋秋完成签到,获得积分10
17秒前
研友_Ze2V48完成签到,获得积分10
20秒前
NexusExplorer应助秀丽菠萝采纳,获得10
22秒前
小马要努力完成签到,获得积分10
24秒前
悄悄.完成签到,获得积分10
25秒前
勤劳小蘑菇完成签到 ,获得积分10
25秒前
jj完成签到 ,获得积分10
26秒前
26秒前
kk完成签到,获得积分10
28秒前
krk发布了新的文献求助10
29秒前
00完成签到,获得积分10
30秒前
小刘完成签到 ,获得积分10
32秒前
curry完成签到 ,获得积分10
33秒前
俭朴羊青完成签到,获得积分10
33秒前
33秒前
34秒前
希望天下0贩的0应助鲁迪采纳,获得10
34秒前
34秒前
34秒前
krk完成签到,获得积分10
35秒前
SnLXn发布了新的文献求助50
36秒前
体贴薯片完成签到,获得积分10
38秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783306
求助须知:如何正确求助?哪些是违规求助? 3328584
关于积分的说明 10237387
捐赠科研通 3043770
什么是DOI,文献DOI怎么找? 1670643
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130