Artificial Neural Network-Based Seedling Phenotypic Information Acquisition of Plant Factory

工厂 苗木 人工神经网络 卷积神经网络 人工智能 计算机科学 鉴定(生物学) 构造(python库) 工厂(面向对象编程) 过程(计算) 模式识别(心理学) 植物 生物 操作系统 程序设计语言
作者
Kaikang Chen,Bo Zhao,Liming Zhou,Yongjun Zheng
出处
期刊:Agriculture [MDPI AG]
卷期号:13 (4): 888-888 被引量:2
标识
DOI:10.3390/agriculture13040888
摘要

This work aims to construct an artificial neural network (ANN) ant colony algorithm (ACA)-based fine recognition system for plant factory seedling phenotypes. To address the problems of complexity and high delay of the plant recognition system in plant factories, first, multiple cameras at different positions are employed to collect images of seedlings and construct 3D images. Then, the mask region convolutional neural networks (MRCNN) algorithm is adopted to analyze plant phenotypes. Finally, the optimized ACA is employed to optimize the process timing in the plant factory, thereby constructing a plant factory seedling phenotype fine identification system via ANN combined with ACA. Moreover, the model performance is analyzed. The results show that plants have four stages of phenotypes, namely, the germination stage, seedling stage, rosette stage, and heading stage. The accuracy of the germination stage reaches 97.01%, and the required test time is 5.64 s. Additionally, the optimization accuracy of the process timing sequence of the proposed model algorithm is maintained at 90.26%, and the delay and energy consumption are stabilized at 20.17 ms and 17.71, respectively, when the data volume is 6000 Mb. However, the problem of image acquisition occlusion in the process of 3D image construction still needs further study. Therefore, the constructed ANN-ACA-based fine recognition system for plant seedling phenotypes can optimize the process timing in a more real-time and lower energy consumption way and provide a reference for the integrated progression of unmanned intelligent recognition systems and complete sets of equipment for plant plants in the later stage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助小乖采纳,获得10
刚刚
1秒前
2秒前
LegendZ完成签到,获得积分10
2秒前
4秒前
九零后无心完成签到,获得积分10
4秒前
小杰完成签到 ,获得积分10
5秒前
Yange发布了新的文献求助10
6秒前
王烜发布了新的文献求助10
7秒前
7秒前
lll完成签到,获得积分20
7秒前
7秒前
东郭以云发布了新的文献求助10
8秒前
8秒前
星辰完成签到,获得积分10
12秒前
13秒前
Alps发布了新的文献求助10
13秒前
蜂蜜完成签到,获得积分10
13秒前
guojingjing发布了新的文献求助10
13秒前
14秒前
爱大美发布了新的文献求助10
14秒前
王烜完成签到,获得积分10
15秒前
蘸蜂蜜发布了新的文献求助10
16秒前
海绵宝宝完成签到 ,获得积分10
17秒前
深情安青应助Belinda601采纳,获得10
18秒前
秀丽大凄发布了新的文献求助10
19秒前
19秒前
爱大美完成签到,获得积分10
20秒前
彘shen完成签到 ,获得积分10
20秒前
赵润泽完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
嘎嘎嘎完成签到,获得积分10
22秒前
lic完成签到,获得积分10
23秒前
Duke完成签到,获得积分10
23秒前
沉静的采波完成签到 ,获得积分10
24秒前
珍珍完成签到,获得积分10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540081
求助须知:如何正确求助?哪些是违规求助? 4626714
关于积分的说明 14600589
捐赠科研通 4567663
什么是DOI,文献DOI怎么找? 2504126
邀请新用户注册赠送积分活动 1481862
关于科研通互助平台的介绍 1453482