Computer-Aided Drug Design Across Breast Cancer Subtypes: Methods, Applications and Translational Outlook

作者
Wei Tian,Ying Hu,Xinyu Gao,Jinghui Yang,Wei Jiang
出处
期刊:International Journal of Molecular Sciences [MDPI AG]
卷期号:26 (21): 10744-10744
标识
DOI:10.3390/ijms262110744
摘要

Breast cancer is a heterogeneous malignancy with distinct molecular subtypes that complicate the development of effective therapies. Traditional drug discovery methods are often constrained by high cost and long development timelines, underscoring the need for more efficient, subtype-aware approaches. Computer-aided drug design (CADD) has emerged as a valuable strategy to accelerate therapeutic discovery and improve lead optimization. This review synthesizes advances from a subtype-centric perspective and outlines the application of CADD techniques, including molecular docking, virtual screening (VS), pharmacophore modeling, and molecular dynamics (MD) simulations, to identify potential targets and inhibitors in receptor-positive (Luminal), HER2-positive (HER2+), and triple-negative breast cancer (TNBC). In addition to traditional pipelines, we highlight artificial intelligence (AI)-enabled methods and a hybrid workflow in which learning-based models rapidly triage chemical space while physics-based simulations provide mechanistic validation. These approaches have facilitated the discovery of subtype-specific compounds and enabled the refinement of candidate drugs to enhance efficacy and reduce toxicity. Despite these advances, critical challenges remain, particularly tumor heterogeneity, drug resistance, and the need to rigorously validate computational predictions through experimental studies. Future progress is expected to be driven by the integration of AI, machine learning (ML), multi-omics data, and digital pathology, which may enable the design of more precise, subtype-informed, and personalized therapeutic strategies for breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
111完成签到,获得积分10
3秒前
Trival完成签到 ,获得积分10
3秒前
王者之师完成签到,获得积分10
5秒前
6秒前
在水一方应助xc采纳,获得10
6秒前
Vicky完成签到,获得积分20
6秒前
Benjamin发布了新的文献求助10
7秒前
7秒前
12完成签到 ,获得积分10
7秒前
小马甲应助顾瑶采纳,获得10
10秒前
10秒前
转转龙完成签到,获得积分10
10秒前
啦啦啦发布了新的文献求助10
10秒前
云辞忧完成签到,获得积分10
10秒前
ZQ完成签到,获得积分10
11秒前
12秒前
dddd完成签到,获得积分10
15秒前
思源应助Benjamin采纳,获得10
15秒前
16秒前
阿柒发布了新的文献求助10
16秒前
Rui_Rui应助伶俐的招牌采纳,获得10
16秒前
bkagyin应助穆青采纳,获得10
17秒前
hoinyes发布了新的文献求助10
17秒前
星辰大海应助沧海泪采纳,获得10
18秒前
18秒前
隐形曼青应助独特的魔镜采纳,获得10
19秒前
ZZQ完成签到,获得积分10
19秒前
23秒前
彭于晏应助周游采纳,获得10
24秒前
24秒前
醉生梦死发布了新的文献求助10
24秒前
临夏完成签到 ,获得积分10
24秒前
25秒前
choichoi发布了新的文献求助10
25秒前
26秒前
淡淡茉莉发布了新的文献求助10
27秒前
30秒前
小兰发布了新的文献求助10
31秒前
研友_LNMmW8发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300240
求助须知:如何正确求助?哪些是违规求助? 4448171
关于积分的说明 13845185
捐赠科研通 4333829
什么是DOI,文献DOI怎么找? 2379156
邀请新用户注册赠送积分活动 1374314
关于科研通互助平台的介绍 1339962