Circulating Neoantigen- and Viral Oncoprotein–Specific CD8+ T Cells Share a Transcriptional Signature

作者
Saumya Jani,Tomas Bencomo,Carolyn Shasha,Thomas H. Pulliam,Ana Jojic,Candice D. Church,Ted Gooley,David M. Koelle,Evan W. Newell,Paul Nghiem
出处
期刊:Cancer immunology research [American Association for Cancer Research]
卷期号:: OF1-OF10
标识
DOI:10.1158/2326-6066.cir-25-0082
摘要

Abstract Tumor-specific CD8+ T cells in blood seem to be important for and predictive of response to anti–PD-1 therapies. However, as most tumor antigens are unique to a given patient, the identification of tumor-specific CD8+ T cells is not routinely feasible. In this study, we characterized polyomavirus-specific CD8+ T cells from the blood of 17 patients with virus-driven Merkel cell carcinoma. We identified a 98-gene signature [Signature of Peripheral Tumor-specific CD8+ T cells (SPoTT)] that discriminated circulating tumor–specific CD8+ T cells from other T cells in immunotherapy-naïve patients. We observed profound transcriptomic differences among tumor-specific CD8+ T cells from blood versus those from tumor. In validation cohorts of Merkel cell carcinoma, as well as neoantigen-driven cancers, the signature of peripheral tumor-specific CD8+ T cells was able to identify viral oncoprotein- and neoantigen-specific CD8+ T cells with both sensitivity and specificity above 75%. We also tested a previously described 151-gene signature (NeoTCRPBL) trained on neoantigen-specific CD8+ T cells and found it was able to recognize Merkel cell polyomavirus–specific T cells with a sensitivity of 66% and a specificity of 88%. These findings show that circulating tumor–specific CD8+ T cells share fundamental characteristics across diverse tumor antigen types. More broadly, insights into antitumor T cells gained from virus-driven cancers are also likely to be relevant in mutationally driven cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
臻酒发布了新的文献求助10
1秒前
1秒前
2秒前
adeno发布了新的文献求助10
2秒前
bioai完成签到,获得积分10
4秒前
4秒前
朴实的乐枫完成签到,获得积分10
4秒前
liulangnmg发布了新的文献求助10
5秒前
Ent_完成签到,获得积分10
6秒前
7秒前
漾漾发布了新的文献求助10
7秒前
叫我理智完成签到,获得积分10
7秒前
安徒完成签到,获得积分10
9秒前
科研通AI6应助标致的从雪采纳,获得10
9秒前
斯文败类应助标致的从雪采纳,获得10
9秒前
HarrisonChan完成签到,获得积分10
10秒前
summer发布了新的文献求助10
11秒前
苏槑特完成签到,获得积分10
11秒前
JamesPei应助江思可采纳,获得10
12秒前
12秒前
12秒前
13秒前
米斯特江江江江完成签到,获得积分10
13秒前
我是苯宝宝完成签到,获得积分10
14秒前
14秒前
英俊的如霜完成签到,获得积分10
14秒前
那小子真帅完成签到,获得积分10
15秒前
凉秋气爽完成签到,获得积分10
15秒前
15秒前
豆腐关注了科研通微信公众号
16秒前
pny发布了新的文献求助10
16秒前
懒洋洋tzy发布了新的文献求助10
17秒前
17秒前
隐形小兔子完成签到,获得积分10
17秒前
霸气的愫发布了新的文献求助10
17秒前
JayceHe应助yuu采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
有梦想的人不睡觉完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608117
求助须知:如何正确求助?哪些是违规求助? 4692671
关于积分的说明 14875371
捐赠科研通 4716727
什么是DOI,文献DOI怎么找? 2544075
邀请新用户注册赠送积分活动 1509064
关于科研通互助平台的介绍 1472781