Ivy‐Inspired Design of Polymer Gel Electrolytes for Fiber Lithium‐Ion Batteries with High Stability

材料科学 电解质 化学工程 电池(电) 聚合物 锂离子电池 固化(化学) 单体 电极 复合材料 化学 物理化学 工程类 功率(物理) 物理 量子力学
作者
Chenhao Lu,Xiangran Cheng,Haibo Jiang,Yuanhong Cao,Jiahe Qu,Yunting Zhang,Yao Long,Xiaocheng Gong,Zhe Yang,Yanan Zhang,Peining Chen,Xuemei Sun,Huisheng Peng,Bingjie Wang
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202513158
摘要

Abstract Polymer gel electrolytes have been integrated into flexible electrodes with channeled structures to replace liquid electrolytes, enabling flexible lithium‐ion batteries that offer both enhanced safety and high performance. However, conventional gel electrolyte preparation often requires harsh conditions—such as heating, ultraviolet (UV) irradiation, or oxygen‐free environments— which hinder scalable and cost‐effective manufacturing. Inspired by the natural adhesion mechanism of ivy, which winds around supports, secretes a monomer‐rich fluid, and undergoes mild crosslinking, a fiber lithium‐ion battery is designed by co‐winding fiber‐based cathodes and anodes, followed by infiltrating and curing a precursor solution containing ternary and pentagonal cyclic ethers as monomers and a Lewis acid as an electrophilic initiator. This solution undergoes room‐temperature curing, forming a robust and stable interface between the gel electrolyte and electrodes. The resulting fiber battery exhibits excellent cycling stability (88% capacity retention after 1000 cycles), mechanical durability (96% retention after 10 000 bending cycles), and storage stability (80% capacity retention at 40 °C and 80% relative humidity (RH)). Remarkably, the battery remains operational under extreme conditions such as cutting and burning. This bioinspired strategy eliminates complex processing steps and lowers production costs by 46%, achieving a manufacturing cost of $1.5 per meter—a critical advancement for the scalable application of flexible battery technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助猪猪hero采纳,获得30
刚刚
齐欢完成签到,获得积分10
2秒前
科研通AI6应助小树苗采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
多肉葡萄发布了新的文献求助10
4秒前
一颗松应助科研通管家采纳,获得30
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助150
7秒前
星辰大海应助吱吱吱采纳,获得10
7秒前
8秒前
10秒前
高高完成签到 ,获得积分10
10秒前
11秒前
lin发布了新的文献求助10
12秒前
14秒前
车厘子完成签到 ,获得积分10
16秒前
清洗剂发布了新的文献求助10
16秒前
自由中心完成签到,获得积分10
16秒前
GuanguanYaa发布了新的文献求助10
17秒前
aa发布了新的文献求助10
17秒前
18秒前
lin完成签到,获得积分10
20秒前
吴彦祖发布了新的文献求助10
22秒前
22秒前
23秒前
myduty完成签到 ,获得积分10
24秒前
自由中心发布了新的文献求助10
24秒前
24秒前
小白完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助150
27秒前
初一发布了新的文献求助10
28秒前
车厘子发布了新的文献求助10
29秒前
庞可焓发布了新的文献求助10
29秒前
吴彦祖完成签到,获得积分10
33秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5153182
求助须知:如何正确求助?哪些是违规求助? 4348800
关于积分的说明 13540187
捐赠科研通 4191273
什么是DOI,文献DOI怎么找? 2298774
邀请新用户注册赠送积分活动 1298838
关于科研通互助平台的介绍 1243791