Deep Learning Synthetic Strain: Quantitative Assessment of Regional Myocardial Wall Motion at MRI

医学 稳态自由进动成像 冠状动脉疾病 接收机工作特性 心脏成像 放射科 心脏病学 内科学 磁共振成像 核医学
作者
Evan Masutani,Rahul S. Chandrupatla,Shuo Wang,Chiara Zocchi,Lewis D. Hahn,Michael Horowitz,Kathleen Jacobs,Seth Kligerman,Francesca Raimondi,Amit R. Patel,Albert Hsiao
出处
期刊:Radiology [Radiological Society of North America]
卷期号:5 (3)
标识
DOI:10.1148/ryct.220202
摘要

Purpose To assess the feasibility of a newly developed algorithm, called deep learning synthetic strain (DLSS), to infer myocardial velocity from cine steady-state free precession (SSFP) images and detect wall motion abnormalities in patients with ischemic heart disease. Materials and Methods In this retrospective study, DLSS was developed by using a data set of 223 cardiac MRI examinations including cine SSFP images and four-dimensional flow velocity data (November 2017 to May 2021). To establish normal ranges, segmental strain was measured in 40 individuals (mean age, 41 years ± 17 [SD]; 30 men) without cardiac disease. Then, DLSS performance in the detection of wall motion abnormalities was assessed in a separate group of patients with coronary artery disease, and these findings were compared with consensus results of four independent cardiothoracic radiologists (ground truth). Algorithm performance was evaluated by using receiver operating characteristic curve analysis. Results Median peak segmental radial strain in individuals with normal cardiac MRI findings was 38% (IQR: 30%–48%). Among patients with ischemic heart disease (846 segments in 53 patients; mean age, 61 years ± 12; 41 men), the Cohen κ among four cardiothoracic readers for detecting wall motion abnormalities was 0.60–0.78. DLSS achieved an area under the receiver operating characteristic curve of 0.90. Using a fixed 30% threshold for abnormal peak radial strain, the algorithm achieved a sensitivity, specificity, and accuracy of 86%, 85%, and 86%, respectively. Conclusion The deep learning algorithm had comparable performance with subspecialty radiologists in inferring myocardial velocity from cine SSFP images and identifying myocardial wall motion abnormalities at rest in patients with ischemic heart disease. Keywords: Neural Networks, Cardiac, MR Imaging, Ischemia/Infarction Supplemental material is available for this article. © RSNA, 2023
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
虹虹完成签到,获得积分10
刚刚
肉酱发布了新的文献求助10
3秒前
FXQ123_范发布了新的文献求助10
3秒前
小谢发布了新的文献求助10
3秒前
3秒前
单纯芹菜完成签到,获得积分10
3秒前
3秒前
FXP应助彬子采纳,获得20
4秒前
虹虹发布了新的文献求助10
4秒前
爱学习的小李完成签到 ,获得积分10
5秒前
6秒前
8秒前
cossen完成签到,获得积分10
8秒前
glj完成签到,获得积分10
8秒前
11完成签到,获得积分10
10秒前
Irender发布了新的文献求助10
10秒前
glj发布了新的文献求助10
10秒前
丰富的慕卉完成签到,获得积分10
11秒前
今后应助fff采纳,获得10
12秒前
13秒前
13秒前
13秒前
青羽凌雪完成签到,获得积分10
13秒前
巴特福莱学校完成签到,获得积分10
13秒前
英俊的铭应助Lasum采纳,获得10
13秒前
寇旭晗完成签到 ,获得积分10
13秒前
酷波er应助wyc采纳,获得10
14秒前
大方茹妖完成签到,获得积分10
14秒前
15秒前
黑森林发布了新的文献求助10
16秒前
酷炫夜雪完成签到,获得积分20
17秒前
眯眯眼的小懒虫完成签到 ,获得积分10
17秒前
17秒前
大方茹妖发布了新的文献求助10
18秒前
18秒前
善良宛筠完成签到,获得积分10
18秒前
生椰拿铁发布了新的文献求助10
19秒前
19秒前
高分求助中
Many-electron theory of superexchange 1000
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Werkstoffe und Bauweisen in der Fahrzeugtechnik 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833048
求助须知:如何正确求助?哪些是违规求助? 3375470
关于积分的说明 10489248
捐赠科研通 3095117
什么是DOI,文献DOI怎么找? 1704226
邀请新用户注册赠送积分活动 819877
科研通“疑难数据库(出版商)”最低求助积分说明 771661