S2 -Transformer for Mask-Aware Hyperspectral Image Reconstruction

高光谱成像 人工智能 迭代重建 计算机视觉 计算机科学 图像处理 模式识别(心理学) 图像(数学)
作者
Jiamian Wang,Kunpeng Li,Yulun Zhang,Xin Yuan,Zhiqiang Tao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:47 (6): 4299-4316
标识
DOI:10.1109/tpami.2025.3543842
摘要

Snapshot compressive imaging (SCI) surges as a novel way of capturing hyperspectral images. It operates an optical encoder to compress the 3D data into a 2D measurement and adopts a software decoder for the signal reconstruction. Recently, a representative SCI set-up of coded aperture snapshot compressive imager (CASSI) with Transformer reconstruction backend remarks high-fidelity sensing performance. However, dominant spatial and spectral attention designs show limitations in hyperspectral modeling. The spatial attention values describe the inter-pixel correlation but overlook the across-spectra variation within each pixel. The spectral attention size is unscalable to the token spatial size and thus bottlenecks information allocation. Besides, CASSI entangles the spatial and spectral information into a 2D measurement, placing a barrier for information disentanglement and modeling. In addition, CASSI blocks the light with a physical binary mask, yielding the masked data loss. To tackle above challenges, we propose a spatial-spectral ($S^{2}$S2-) Transformer implemented by a paralleled attention design and a mask-aware learning strategy. First, we systematically explore pros and cons of different spatial (-spectral) attention designs, based on which we find performing both attentions in parallel well disentangles and models the blended information. Second, the masked pixels induce higher prediction difficulty and should be treated differently from unmasked ones. We adaptively prioritize the loss penalty attributing to the mask structure by referring to the mask-encoded prediction as an uncertainty estimator. We theoretically discuss the distinct convergence tendencies between masked/unmasked regions of the proposed learning strategy. Extensive experiments demonstrate that on average, the results of the proposed method are superior over the state-of-the-art methods. We empirically visualize and reason the behaviour of spatial and spectral attentions, and comprehensively examine the impact of the mask-aware learning, both of which advances the physics-driven deep network design for the reconstruction with CASSI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yang发布了新的文献求助20
刚刚
1秒前
meizi发布了新的文献求助10
1秒前
CipherSage应助可靠的访冬采纳,获得10
1秒前
overlood发布了新的文献求助10
4秒前
深情安青应助榴下晨光采纳,获得10
4秒前
刘刘大顺发布了新的文献求助10
4秒前
史纪鹏完成签到,获得积分10
6秒前
6秒前
7秒前
xyawl425完成签到,获得积分10
10秒前
11秒前
隐形曼青应助overlood采纳,获得10
11秒前
Zhou完成签到,获得积分10
11秒前
11秒前
琪琪完成签到 ,获得积分10
13秒前
14秒前
14秒前
科研通AI5应助天真的冬寒采纳,获得10
15秒前
可爱的函函应助黄俊采纳,获得10
16秒前
aaiirrii发布了新的文献求助10
17秒前
17秒前
脑洞疼应助结实灵凡采纳,获得10
17秒前
18秒前
一天完成签到,获得积分10
18秒前
18秒前
18秒前
鉴定为学计算学的完成签到,获得积分10
19秒前
20秒前
nn发布了新的文献求助20
20秒前
斯文又槐完成签到 ,获得积分10
20秒前
榴下晨光发布了新的文献求助10
21秒前
kingwill应助淡定的柠檬采纳,获得20
23秒前
阑楚发布了新的文献求助10
23秒前
CodeCraft应助小马同学采纳,获得10
25秒前
du发布了新的文献求助10
25秒前
26秒前
蓝天应助nini采纳,获得10
26秒前
张泽宇完成签到,获得积分10
26秒前
Akim应助游畅采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4452680
求助须知:如何正确求助?哪些是违规求助? 3919615
关于积分的说明 12165397
捐赠科研通 3569785
什么是DOI,文献DOI怎么找? 1960475
邀请新用户注册赠送积分活动 999757
科研通“疑难数据库(出版商)”最低求助积分说明 894733