S2-Transformer for Mask-Aware Hyperspectral Image Reconstruction

高光谱成像 人工智能 迭代重建 计算机视觉 计算机科学 图像处理 模式识别(心理学) 图像(数学)
作者
Jiamian Wang,Kunpeng Li,Yulun Zhang,Xin Yuan,Zhiqiang Tao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (6): 4299-4316 被引量:10
标识
DOI:10.1109/tpami.2025.3543842
摘要

Snapshot compressive imaging (SCI) surges as a novel way of capturing hyperspectral images. It operates an optical encoder to compress the 3D data into a 2D measurement and adopts a software decoder for the signal reconstruction. Recently, a representative SCI set-up of coded aperture snapshot compressive imager (CASSI) with Transformer reconstruction backend remarks high-fidelity sensing performance. However, dominant spatial and spectral attention designs show limitations in hyperspectral modeling. The spatial attention values describe the inter-pixel correlation but overlook the across-spectra variation within each pixel. The spectral attention size is unscalable to the token spatial size and thus bottlenecks information allocation. Besides, CASSI entangles the spatial and spectral information into a 2D measurement, placing a barrier for information disentanglement and modeling. In addition, CASSI blocks the light with a physical binary mask, yielding the masked data loss. To tackle above challenges, we propose a spatial-spectral ($S^{2}$S2-) Transformer implemented by a paralleled attention design and a mask-aware learning strategy. First, we systematically explore pros and cons of different spatial (-spectral) attention designs, based on which we find performing both attentions in parallel well disentangles and models the blended information. Second, the masked pixels induce higher prediction difficulty and should be treated differently from unmasked ones. We adaptively prioritize the loss penalty attributing to the mask structure by referring to the mask-encoded prediction as an uncertainty estimator. We theoretically discuss the distinct convergence tendencies between masked/unmasked regions of the proposed learning strategy. Extensive experiments demonstrate that on average, the results of the proposed method are superior over the state-of-the-art methods. We empirically visualize and reason the behaviour of spatial and spectral attentions, and comprehensively examine the impact of the mask-aware learning, both of which advances the physics-driven deep network design for the reconstruction with CASSI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
小小油完成签到,获得积分10
2秒前
愤怒的水绿完成签到,获得积分10
3秒前
hahaha6789y完成签到,获得积分10
3秒前
Mo完成签到,获得积分10
4秒前
hahaha2完成签到,获得积分10
6秒前
cl完成签到,获得积分10
7秒前
sheep完成签到,获得积分10
7秒前
surlamper完成签到,获得积分10
7秒前
MaxwellZH完成签到,获得积分10
7秒前
Tom2077完成签到,获得积分10
7秒前
徐彬荣完成签到,获得积分10
8秒前
Walton完成签到,获得积分10
8秒前
spider534完成签到,获得积分10
8秒前
清风徐来完成签到,获得积分10
9秒前
9秒前
BlueKitty完成签到,获得积分10
9秒前
茴香豆完成签到,获得积分10
9秒前
孤傲的静脉完成签到 ,获得积分10
10秒前
PaperCrane完成签到,获得积分10
10秒前
10秒前
量子咸鱼K完成签到,获得积分10
10秒前
hahaha1完成签到,获得积分10
10秒前
冰冻芋头完成签到,获得积分10
10秒前
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
fate完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
沈惠映完成签到 ,获得积分10
14秒前
Mark完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
btcat完成签到,获得积分0
18秒前
Novice6354完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773368
求助须知:如何正确求助?哪些是违规求助? 5610371
关于积分的说明 15430973
捐赠科研通 4905878
什么是DOI,文献DOI怎么找? 2639904
邀请新用户注册赠送积分活动 1587778
关于科研通互助平台的介绍 1542792