Electrochromic Rutile with Dynamically Tailored Surfaces in Formaldehyde-Mediated Hydroxylamine Electrosynthesis

化学 电合成 羟胺 电致变色 金红石 甲醛 有机化学 电化学 电极 物理化学
作者
Jiaqi Zhang,Erbo Zhao,Chou-Hung Hsueh,Weng‐Chon Cheong,Xin Tan,Chuhao Liu,Xiang Liu,Jinxin Wang,Hai Xiao,Chen Chen
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:147 (24): 20559-20570 被引量:3
标识
DOI:10.1021/jacs.5c03124
摘要

Electrocatalytic nitrate reduction is an attractive route for sustainable hydroxylamine synthesis, but its selectivity is limited by over-reduction and competing hydrogen evolution, highlighting the need for in-depth mechanistic understanding to guide catalyst design. Here, we systematically investigate the electrochemical synthesis of hydroxylamine via a formaldehyde-mediated method on titanium oxides. An electrochromic rutile array prepared via a wet-chemical route achieved a Faradaic efficiency (FE) of 92.6% (for formaldehyde oxime) and a corresponding yield rate of up to 2085 μmol cm-2 h-1 under ambient conditions. Mechanistic studies reveal that the electrochromism is a macroscopic manifestation of the protonation of Ob (bridging oxygen) sites and the formation of Ov (oxygen vacancies) and Ti3+, which act as proton "sponges" and electron reservoirs. Formaldehyde not only serves as the capturing agent but also helps to stabilize *NH2OH through molecular tuning, thereby achieving high selectivity. Through formaldehyde-nitrate electro-reforming, hydrogen, formic acid, and hydroxylamine can be coproduced at 200 mA cm-2 under an ultralow cell voltage of 0.78 V. This work links the catalytic performance of hydroxylamine electrosynthesis to the dynamic surface of titanium oxides, offering insights into selectivity control in nitrate electroreduction and providing a green, cost-effective alternative to conventional hydroxylamine synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wj完成签到,获得积分10
刚刚
www发布了新的文献求助30
刚刚
fanqiaqia发布了新的文献求助30
1秒前
洁净的半鬼完成签到,获得积分20
1秒前
情怀应助leslieo3o采纳,获得10
1秒前
大个应助布洛芬缓释胶囊采纳,获得10
2秒前
001完成签到 ,获得积分10
2秒前
严锦强完成签到,获得积分10
3秒前
上官若男应助jorjames采纳,获得10
3秒前
浮浮世世发布了新的文献求助10
3秒前
七七完成签到,获得积分10
4秒前
黄梦娇完成签到,获得积分10
4秒前
sunny完成签到 ,获得积分10
4秒前
5秒前
苏七完成签到,获得积分10
6秒前
烟花应助洁净的半鬼采纳,获得10
6秒前
wsq完成签到,获得积分10
7秒前
7秒前
顺利紫山完成签到,获得积分10
7秒前
cdc完成签到 ,获得积分10
8秒前
8秒前
斑斑完成签到 ,获得积分10
8秒前
kangkang完成签到,获得积分10
8秒前
9秒前
充电宝应助科研小反派采纳,获得10
9秒前
9秒前
changping应助Ann采纳,获得20
9秒前
科研人完成签到 ,获得积分10
10秒前
Ava应助初空月儿采纳,获得10
10秒前
jlk完成签到,获得积分10
10秒前
sylinmm完成签到,获得积分10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
思源应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295559
求助须知:如何正确求助?哪些是违规求助? 4445074
关于积分的说明 13835332
捐赠科研通 4329472
什么是DOI,文献DOI怎么找? 2376680
邀请新用户注册赠送积分活动 1371973
关于科研通互助平台的介绍 1337270