Propofol-associated Hypertriglyceridemia: Development and Multicenter Validation of a Machine-Learning-Based Prediction Tool

医学 异丙酚 高甘油三酯血症 置信区间 机械通风 镇静 重症监护 治疗药物监测 急诊医学 甘油三酯 重症监护医学 内科学 麻醉 药代动力学 胆固醇
作者
Jiawen Deng,Kiyan Heybati,Keshav Poudel,Guozhen Xie,Eric Zuberi,Vinaya Simha,Hemang Yadav
出处
期刊:Journal of Intensive Care Medicine [SAGE]
卷期号:40 (11): 1159-1168
标识
DOI:10.1177/08850666251342559
摘要

Purpose: To develop and validate an explainable machine learning (ML) tool to help clinicians predict the risk of propofol-associated hypertriglyceridemia in critically ill patients receiving propofol sedation. Methods: Patients from 11 intensive care units (ICUs) across five Mayo Clinic hospitals were included if they met the following criteria: a) ≥ 18 years of age, b) received propofol infusion while on invasive mechanical ventilation for ≥24 h, and c) had a triglyceride level measured. The primary outcome was hypertriglyceridemia (triglyceride >400 mg/dL) onset within 10 days of propofol initiation. Both COVID-inclusive and COVID-independent modeling pipelines were developed to ensure applicability post-pandemic. Decision thresholds were chosen to maintain model sensitivity >80%. Nested leave-one-site-out cross-validation (LOSO-CV) was used to externally evaluate pipeline performance. Model explainability was assessed using permutation importance and SHapley Additive exPlanations (SHAP). Results: Among 3922 included patients, 769 (19.6%) developed propofol-associated hypertriglyceridemia, and 879 (22.4%) had COVID-19 at ICU admission. During nested LOSO-CV, the COVID-inclusive pipeline achieved an average AUC-ROC of 0.71 (95% confidence interval [CI] 0.70–0.72), while the COVID-independent pipeline achieved an average AUC-ROC of 0.69 (95% CI 0.68–0.70). Age, initial propofol dose, and BMI were the top three most important features in both models. Conclusion: We developed an explainable ML-based tool with acceptable predictive performance for assessing the risk of propofol-associated hypertriglyceridemia in ICU patients. This tool can aid clinicians in identifying at-risk patients to guide triglyceride monitoring and optimize sedative selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿欣完成签到,获得积分10
刚刚
不安忆寒发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
3秒前
科研通AI6应助周一采纳,获得10
4秒前
Proudmoore完成签到,获得积分10
5秒前
木马发布了新的文献求助10
5秒前
情怀应助树杪采纳,获得10
5秒前
6秒前
ping发布了新的文献求助10
6秒前
N1koooooo发布了新的文献求助10
7秒前
李琳发布了新的文献求助10
7秒前
情怀应助青丝挽情丝采纳,获得10
7秒前
8秒前
8秒前
8秒前
科研通AI6应助小胖采纳,获得10
8秒前
完美的从菡完成签到,获得积分10
8秒前
9秒前
轩丫丫完成签到,获得积分10
9秒前
9秒前
beckham发布了新的文献求助10
9秒前
欣喜忻完成签到,获得积分10
9秒前
爆米花应助是希希啊a采纳,获得10
9秒前
SciGPT应助kuichen采纳,获得30
11秒前
acadedog发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
富贵完成签到,获得积分10
11秒前
等待geduo完成签到 ,获得积分10
12秒前
12秒前
碰碰发布了新的文献求助10
12秒前
12秒前
14秒前
桃桃发布了新的文献求助10
14秒前
棒棒羊完成签到,获得积分10
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610659
求助须知:如何正确求助?哪些是违规求助? 4695146
关于积分的说明 14885752
捐赠科研通 4722969
什么是DOI,文献DOI怎么找? 2545215
邀请新用户注册赠送积分活动 1509959
关于科研通互助平台的介绍 1473103