Propofol-associated Hypertriglyceridemia: Development and Multicenter Validation of a Machine-Learning-Based Prediction Tool

医学 异丙酚 高甘油三酯血症 置信区间 机械通风 镇静 重症监护 治疗药物监测 急诊医学 甘油三酯 重症监护医学 内科学 麻醉 药代动力学 胆固醇
作者
Jiawen Deng,Kiyan Heybati,Keshav Poudel,Guozhen Xie,Eric Zuberi,Vinaya Simha,Hemang Yadav
出处
期刊:Journal of Intensive Care Medicine [SAGE Publishing]
卷期号:40 (11): 1159-1168
标识
DOI:10.1177/08850666251342559
摘要

Purpose: To develop and validate an explainable machine learning (ML) tool to help clinicians predict the risk of propofol-associated hypertriglyceridemia in critically ill patients receiving propofol sedation. Methods: Patients from 11 intensive care units (ICUs) across five Mayo Clinic hospitals were included if they met the following criteria: a) ≥ 18 years of age, b) received propofol infusion while on invasive mechanical ventilation for ≥24 h, and c) had a triglyceride level measured. The primary outcome was hypertriglyceridemia (triglyceride >400 mg/dL) onset within 10 days of propofol initiation. Both COVID-inclusive and COVID-independent modeling pipelines were developed to ensure applicability post-pandemic. Decision thresholds were chosen to maintain model sensitivity >80%. Nested leave-one-site-out cross-validation (LOSO-CV) was used to externally evaluate pipeline performance. Model explainability was assessed using permutation importance and SHapley Additive exPlanations (SHAP). Results: Among 3922 included patients, 769 (19.6%) developed propofol-associated hypertriglyceridemia, and 879 (22.4%) had COVID-19 at ICU admission. During nested LOSO-CV, the COVID-inclusive pipeline achieved an average AUC-ROC of 0.71 (95% confidence interval [CI] 0.70–0.72), while the COVID-independent pipeline achieved an average AUC-ROC of 0.69 (95% CI 0.68–0.70). Age, initial propofol dose, and BMI were the top three most important features in both models. Conclusion: We developed an explainable ML-based tool with acceptable predictive performance for assessing the risk of propofol-associated hypertriglyceridemia in ICU patients. This tool can aid clinicians in identifying at-risk patients to guide triglyceride monitoring and optimize sedative selection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灿灿完成签到,获得积分10
刚刚
刚刚
小耿发布了新的文献求助10
1秒前
Jane完成签到,获得积分20
1秒前
1秒前
半夏发布了新的文献求助10
2秒前
2秒前
深情安青应助平凡的世界采纳,获得10
2秒前
NexusExplorer应助srics采纳,获得10
2秒前
2秒前
2秒前
Jole发布了新的文献求助10
3秒前
ZY发布了新的文献求助10
3秒前
Jaslin完成签到,获得积分10
3秒前
Alanni完成签到 ,获得积分10
4秒前
Relax发布了新的文献求助10
4秒前
叶y完成签到,获得积分10
5秒前
火星完成签到,获得积分10
5秒前
张张完成签到 ,获得积分10
5秒前
大气鹰完成签到,获得积分10
5秒前
俏皮短靴发布了新的文献求助10
6秒前
6秒前
小莫小莫完成签到,获得积分10
6秒前
6秒前
gyhmm发布了新的文献求助10
6秒前
7秒前
温婉的乞完成签到,获得积分20
7秒前
天天快乐应助新嘟采纳,获得10
7秒前
科研通AI6应助aaa采纳,获得10
7秒前
gogoal发布了新的文献求助10
8秒前
8秒前
8秒前
123完成签到,获得积分10
8秒前
vigor完成签到 ,获得积分10
10秒前
Jane发布了新的文献求助10
10秒前
11秒前
浮游应助能干的映安采纳,获得10
11秒前
my发布了新的文献求助10
11秒前
baimiaomuzi完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5318095
求助须知:如何正确求助?哪些是违规求助? 4460326
关于积分的说明 13878275
捐赠科研通 4350776
什么是DOI,文献DOI怎么找? 2389539
邀请新用户注册赠送积分活动 1383643
关于科研通互助平台的介绍 1353101