From Model Development to Mitigation: Machine Learning for Predicting and Minimizing Iodinated Trihalomethanes in Water Treatment

水处理 环境科学 计算机科学 化学 环境工程
作者
Md. Mahjib Hossain,Rabbi Sikder,Guanghui Hua,Tao Ye
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.5c05409
摘要

Disinfection processes in water treatment produce disinfection byproducts (DBPs), such as iodinated trihalomethanes (I-THMs), which pose significant health risks. Mitigating I-THMs remains challenging due to the complex interactions among water quality parameters, disinfectants, and iodine sources, compounded by the difficulty of predicting their formation under varying treatment conditions. This study leverages a data set of 1534 samples from published studies to predict I-THM formation using machine learning (ML). Among five evaluated ensemble models, CatBoost Regression achieved the best performance. Incorporating domain-specific features (iodine/DOC and oxidant/DOC ratios) improved model accuracy and interpretability. Recursive feature elimination revealed that nearly half of the features could be excluded without compromising performance, simplifying model development and reducing experimental effort, an advantage often overlooked in prior research. Feature analysis identified key predictors and mitigation strategies, including minimizing iodine and bromide concentrations, reducing iodine/DOC, UV254 and SUVA levels, and optimizing chlorine dose. The model further enabled rapid identification of the optimal chlorine dose to minimize I-THMs using incremental and Bayesian optimization. Achieving an R2 of 0.67 on an external validation data set, the model demonstrated strong generalizability. This study establishes ML as a powerful tool for predicting and mitigating I-THMs, offering actionable strategies for safer drinking water treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
always发布了新的文献求助10
1秒前
万能图书馆应助历史真相采纳,获得10
1秒前
憨憨完成签到 ,获得积分10
1秒前
2秒前
QQ完成签到,获得积分10
6秒前
8秒前
10秒前
11秒前
hahaha完成签到,获得积分20
11秒前
jiao完成签到,获得积分10
11秒前
Jasper应助Issac01采纳,获得10
12秒前
大模型应助苹果采纳,获得10
12秒前
FnDs完成签到,获得积分10
12秒前
bono完成签到 ,获得积分10
12秒前
hahaha发布了新的文献求助10
14秒前
14秒前
17秒前
17秒前
19秒前
21秒前
22秒前
23秒前
苏州小北发布了新的文献求助10
24秒前
25秒前
26秒前
wlq发布了新的文献求助10
26秒前
Issac01发布了新的文献求助10
26秒前
xiaosi完成签到 ,获得积分10
27秒前
666发布了新的文献求助10
28秒前
鹏1989发布了新的文献求助10
29秒前
历史真相发布了新的文献求助10
29秒前
32秒前
xingxing应助七月采纳,获得10
32秒前
33秒前
迷路秋荷完成签到 ,获得积分10
33秒前
dd完成签到 ,获得积分10
34秒前
CipherSage应助wlq采纳,获得10
36秒前
帅气的襄发布了新的文献求助10
37秒前
大个应助美丽的冰蓝采纳,获得10
38秒前
张芙瑶发布了新的文献求助10
42秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4126291
求助须知:如何正确求助?哪些是违规求助? 3663886
关于积分的说明 11593318
捐赠科研通 3363474
什么是DOI,文献DOI怎么找? 1848222
邀请新用户注册赠送积分活动 912232
科研通“疑难数据库(出版商)”最低求助积分说明 827947