An explainable prediction model for drug-induced interstitial pneumonitis

间质性肺炎 药品 医学 药理学 内科学 肺病
作者
Feyza Kelleci̇ Çeli̇k,Sezen Yılmaz Sarıaltın
出处
期刊:Journal of research in pharmacy [ASOS Yayinevi]
卷期号:29 (1): 322-334
标识
DOI:10.12991/jrespharm.1644357
摘要

Drug-induced interstitial pneumonitis (DIP) is an inflammation of the lung interstitium, emerging due to the pneumotoxic effects of pharmaceuticals. The diagnosis is challenging due to nonspecific clinical presentations and limited testing. Therefore, identifying the risk of drug-related pneumonitis is required during the early phases of drug development. This study aims to estimate DIP using binary quantitative structure-toxicity relationship (QSTR) models. The dataset was composed of 468 active pharmaceutical ingredients (APIs). Five critical modeling descriptors were chosen. Then, four machine-learning (ML) algorithms were conducted to build prediction models with the selected molecular identifiers. The developed models were validated using the internal 10-fold cross-validation and external test set. The Logistic Regression (LR) algorithm outperformed all other models, achieving 95.72% and 94.68% accuracy in internal and external validation, respectively. Additionally, the individual effect of each descriptor on the model output was determined using the SHapley Additive exPlanations (SHAP) approach. This analysis indicated that the pneumonitis effects of drugs might predominantly be attributed to their atomic masses, polarizabilities, van der Waals volumes, surface areas, and electronegativities. Apart from the strong model performance, the SHAP local explanations can assist molecular modifications to reduce or avoid the risk of pneumonitis for each molecule in the test set. Contributing to the drug safety profile, the current classification model can guide advanced pneumotoxicity testing and reduce late-stage failures in drug development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jjh完成签到,获得积分20
1秒前
4秒前
hg08完成签到 ,获得积分10
4秒前
成就千易发布了新的文献求助10
6秒前
6秒前
8秒前
搜集达人应助皮皮鲁采纳,获得10
9秒前
科研通AI5应助俭朴尔岚采纳,获得10
10秒前
淡淡书白完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
小粉丝发布了新的文献求助30
14秒前
CipherSage应助陈晓迪1992采纳,获得10
14秒前
15秒前
勤劳怜寒完成签到,获得积分10
15秒前
15秒前
皮皮鲁发布了新的文献求助10
17秒前
成就千易完成签到,获得积分10
17秒前
17秒前
tracer发布了新的文献求助10
18秒前
Capedem发布了新的文献求助10
19秒前
yy发布了新的文献求助10
19秒前
粗暴的季节完成签到,获得积分10
19秒前
山竹发布了新的文献求助10
20秒前
22秒前
23秒前
24秒前
Choco完成签到,获得积分10
24秒前
24秒前
25秒前
酒醉的蝴蝶完成签到 ,获得积分10
27秒前
陈晓迪1992完成签到,获得积分10
27秒前
duxh123完成签到 ,获得积分10
28秒前
班钰发布了新的文献求助10
29秒前
llg发布了新的文献求助10
29秒前
岁晚发布了新的文献求助10
29秒前
maox1aoxin应助yyx采纳,获得30
30秒前
嘎嘎发布了新的文献求助10
30秒前
现代的南风完成签到 ,获得积分10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780127
求助须知:如何正确求助?哪些是违规求助? 3325442
关于积分的说明 10223131
捐赠科研通 3040629
什么是DOI,文献DOI怎么找? 1668938
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758623