An explainable prediction model for drug-induced interstitial pneumonitis

间质性肺炎 药品 医学 药理学 内科学 肺病
作者
Feyza Kelleci̇ Çeli̇k,Sezen Yılmaz Sarıaltın
出处
期刊:Journal of research in pharmacy [ASOS Yayinevi]
卷期号:29 (1): 322-334
标识
DOI:10.12991/jrespharm.1644357
摘要

Drug-induced interstitial pneumonitis (DIP) is an inflammation of the lung interstitium, emerging due to the pneumotoxic effects of pharmaceuticals. The diagnosis is challenging due to nonspecific clinical presentations and limited testing. Therefore, identifying the risk of drug-related pneumonitis is required during the early phases of drug development. This study aims to estimate DIP using binary quantitative structure-toxicity relationship (QSTR) models. The dataset was composed of 468 active pharmaceutical ingredients (APIs). Five critical modeling descriptors were chosen. Then, four machine-learning (ML) algorithms were conducted to build prediction models with the selected molecular identifiers. The developed models were validated using the internal 10-fold cross-validation and external test set. The Logistic Regression (LR) algorithm outperformed all other models, achieving 95.72% and 94.68% accuracy in internal and external validation, respectively. Additionally, the individual effect of each descriptor on the model output was determined using the SHapley Additive exPlanations (SHAP) approach. This analysis indicated that the pneumonitis effects of drugs might predominantly be attributed to their atomic masses, polarizabilities, van der Waals volumes, surface areas, and electronegativities. Apart from the strong model performance, the SHAP local explanations can assist molecular modifications to reduce or avoid the risk of pneumonitis for each molecule in the test set. Contributing to the drug safety profile, the current classification model can guide advanced pneumotoxicity testing and reduce late-stage failures in drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZJRerrr发布了新的文献求助10
1秒前
jizy发布了新的文献求助10
1秒前
树妖三三完成签到,获得积分10
1秒前
华仔应助空耳大师采纳,获得10
1秒前
fsxadada123完成签到,获得积分20
1秒前
1秒前
4秒前
韩韩发布了新的文献求助10
4秒前
5秒前
5秒前
BowieHuang应助guo采纳,获得10
5秒前
杨山坡发布了新的文献求助20
6秒前
盐碱地的小草完成签到,获得积分10
6秒前
7秒前
英俊的铭应助李老头采纳,获得10
7秒前
8秒前
9秒前
9秒前
cui完成签到,获得积分10
9秒前
hzy发布了新的文献求助10
10秒前
漂亮夏兰发布了新的文献求助10
11秒前
离个大谱发布了新的文献求助10
11秒前
Hgybdo完成签到,获得积分10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
mwx应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
zyx应助科研通管家采纳,获得10
12秒前
mwx应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
zyx应助科研通管家采纳,获得10
13秒前
mwx应助科研通管家采纳,获得10
13秒前
木头人应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532650
求助须知:如何正确求助?哪些是违规求助? 4621382
关于积分的说明 14577620
捐赠科研通 4561234
什么是DOI,文献DOI怎么找? 2499258
邀请新用户注册赠送积分活动 1479203
关于科研通互助平台的介绍 1450406