Tuberculosis remains a major global health threat, with traditional antibiotic treatments facing challenges such as drug resistance. Host-directed therapy (HDT) has emerged as a promising approach to combat tuberculosis by enhancing the host immune response. CXCL14, a chemokine family member, plays a crucial role in regulating host antipathogenic immune responses. To elucidate the role of CXCL14 and its key regulatory molecules in mycobacterial infections, we identified new targets for host-directed therapy. RAW264.7 macrophages were pretreated with CXCL14 and infected with Mycobacterium smegmatis. CFU, ROS levels, and apoptosis were assessed. Cell RNA was extracted for high-throughput sequencing, and significantly differentially expressed genes were screened and identified. The effects of candidate genes were verified using knockdown and overexpression techniques. A mouse model of mycobacterial infection was established to validate the role of CXCL14 in vivo. CXCL14 pretreatment significantly reduced intracellular mycobacteria and increased ROS levels in macrophages without affecting apoptosis. Transcriptome analysis identified A20 as a key differentially expressed gene. A20 overexpression promoted ROS production and decreased intracellular mycobacteria, while A20 knockdown reversed these effects. The combination of CXCL14 and A20 overexpression effectively inhibited mycobacterial survival in macrophages. CXCL14 significantly inhibited mycobacterial survival in mice and reduced organ damage in vivo. CXCL14 promoted ROS production in macrophages by upregulating A20 expression, thereby inhibiting mycobacterial survival. In the mouse model, CXCL14 alleviated inflammatory responses and histopathological damage caused by mycobacterial infection. These findings suggest that CXCL14 is a promising new HDT molecule for the treatment of mycobacterial infections.