Cognitive Load Assessment Through EEG: A Dataset from Arithmetic and Stroop Tasks.

斯特罗普效应 脑电图 认知 认知负荷 认知心理学 计算机科学 自动症(医学) 算术 心理学 听力学 神经科学 医学 数学
作者
Ali Nirabi,Faridah Abd Rahman,Mohamed Hadi Habaebi,Khairul Azami Sidek,Siti Hajar Yusoff
出处
期刊:Data in Brief [Elsevier]
卷期号:60: 111477-111477 被引量:1
标识
DOI:10.1016/j.dib.2025.111477
摘要

This study introduces a thoughtfully curated dataset comprising electroencephalogram (EEG) recordings designed to unravel mental stress patterns through the perspective of cognitive load. The dataset incorporates EEG signals obtained from 15 subjects, with a gender distribution of 8 females and 7 males, and a mean age of 21.5 years [1]. Recordings were collected during the subjects' engagement in diverse tasks, including the Stroop color-word test and arithmetic problem-solving tasks. The recordings are categorized into four classes representing varying levels of induced mental stress: normal, low, mid, and high. Each task was performed for a duration of 10-20 s, and three trials were conducted for comprehensive data collection. Employing an OpenBCI device with an 8-channel Cyton board, the EEG captures intricate responses of the frontal lobe to cognitive challenges posed by the Stroop and Arithmetic Tests, recorded at a sampling rate of 250 Hz. The proposed dataset serves as a valuable resource for advancing research in the realm of brain-computer interfaces and offers insights into identifying EEG patterns associated with stress. The proposed dataset serves as a valuable resource for researchers, offering insights into identifying EEG patterns that correlate with different stress states. By providing a solid foundation for the development of algorithms capable of detecting and classifying stress levels, the dataset supports innovations in non-invasive monitoring tools and contributes to personalized healthcare solutions that can adapt to the cognitive states of users. This study's foundation is crucial for advancing stress classification research, with significant implications for cognitive function and well-being.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
doudou发布了新的文献求助10
2秒前
2秒前
yangsir应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
科目三应助机灵幻悲采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
3秒前
12发布了新的文献求助10
3秒前
地表飞猪应助科研通管家采纳,获得50
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
web发布了新的文献求助10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
LH完成签到,获得积分10
4秒前
4秒前
bkagyin应助科研通管家采纳,获得20
4秒前
浮游应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
5秒前
WR完成签到,获得积分10
5秒前
虚幻百川应助科研通管家采纳,获得10
5秒前
俊俊完成签到 ,获得积分10
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
大胆诗云发布了新的文献求助10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
舒克发布了新的文献求助10
6秒前
丘比特应助doudou采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5520836
求助须知:如何正确求助?哪些是违规求助? 4612497
关于积分的说明 14533665
捐赠科研通 4550060
什么是DOI,文献DOI怎么找? 2493332
邀请新用户注册赠送积分活动 1474567
关于科研通互助平台的介绍 1446106