IodoFinder: Machine Learning-Guided Recognition of Iodinated Chemicals in Nontargeted LC-MS/MS Analysis

化学 色谱法 计算机科学
作者
Tingting Zhao,Qiming Shen,Xing‐Fang Li,Tao Huan
出处
期刊:Environmental Science & Technology [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.est.4c12698
摘要

Iodinated disinfection byproducts (I-DBPs) pose significant health concerns due to their high toxicity. Current approaches to recognize unknown I-DBPs in mass spectrometry (MS) analysis rely on negative ionization mode, in which the characteristic I– fragment can be observed in tandem mass spectra (MS/MS). Still, many I-DBPs ionize exclusively in positive ionization mode, where the I– fragment is absent. To address this gap, this work developed a machine learning-based strategy to recognize iodinated compounds (I-compounds) from their MS/MS in both electrospray positive (ESI+) and negative ionization (ESI−) modes. Investigating over 6000 MS/MS spectra of 381 I-compounds, we first identified five characteristic I-containing neutral losses and one diagnostic I– fragment in ESI+ and ESI– modes, respectively. We then trained Random Forest models and integrated them into IodoFinder, a Python program, to streamline the recognition of I-compounds from raw LC-MS data. IodoFinder accurately recognized over 96% of the 161 I-compound standards in both ionization modes. In its application to DBP mixtures, IodoFinder discovered 19 I-DBPs with annotated structures and an additional 17 with assigned formulas, including 12 novel and 3 confirmed I-DBPs. We envision that IodoFinder will advance the identification of both known and unknown I-compounds in exposome studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Kenzonvay发布了新的文献求助10
2秒前
shenxian82133完成签到,获得积分10
3秒前
AI发布了新的文献求助10
4秒前
SciGPT应助pengyh8采纳,获得10
4秒前
纯情的远山完成签到,获得积分10
4秒前
wufel完成签到,获得积分10
6秒前
科研小哥发布了新的文献求助10
6秒前
7秒前
7秒前
伯赏思山完成签到 ,获得积分10
8秒前
小贝壳要快乐吖完成签到,获得积分10
8秒前
大福完成签到,获得积分10
9秒前
LuoYR@SZU完成签到,获得积分10
10秒前
za==完成签到 ,获得积分10
10秒前
老鼠耗子完成签到,获得积分10
12秒前
12秒前
科研小哥完成签到,获得积分0
13秒前
洁净的向南完成签到 ,获得积分10
13秒前
hentsi发布了新的文献求助10
14秒前
大个应助ceicic采纳,获得10
14秒前
15秒前
ty发布了新的文献求助10
16秒前
18秒前
Lin_Yongqi发布了新的文献求助10
18秒前
qy发布了新的文献求助10
19秒前
云汐儿完成签到,获得积分10
20秒前
Jeanne发布了新的文献求助10
21秒前
21秒前
QXR完成签到,获得积分10
21秒前
mslln发布了新的文献求助10
22秒前
huofuman完成签到,获得积分10
22秒前
罗静完成签到,获得积分10
22秒前
涵涵发布了新的文献求助10
22秒前
星辰大海应助ryj采纳,获得10
25秒前
shun发布了新的文献求助10
26秒前
清新的易真完成签到,获得积分10
29秒前
29秒前
可爱的函函应助司空豁采纳,获得10
29秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845856
求助须知:如何正确求助?哪些是违规求助? 3388210
关于积分的说明 10552030
捐赠科研通 3108791
什么是DOI,文献DOI怎么找? 1713127
邀请新用户注册赠送积分活动 824593
科研通“疑难数据库(出版商)”最低求助积分说明 774927