Enhanced transfer learning method for rolling bearing fault diagnosis based on linear superposition network

计算机科学 叠加原理 学习迁移 人工智能 深度学习 卷积神经网络 断层(地质) 卷积(计算机科学) 传递函数 特征学习 方位(导航) 特征(语言学) 模式识别(心理学) 人工神经网络 机器学习 算法 数学 工程类 地震学 地质学 数学分析 语言学 哲学 电气工程
作者
Chunran Huo,Quan Jiang,Yehu Shen,Qixin Zhu,Qingkui Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:121: 105970-105970 被引量:51
标识
DOI:10.1016/j.engappai.2023.105970
摘要

Deep transfer learning is used to solve the problem of unsupervised intelligent fault diagnosis of rolling bearings. However, when the data distribution between two domains is different, the existing deep transfer learning models which only rely on the domain-invariant features are not enough to complete the target domain data learning. To solve this problem, an enhanced transfer learning method based on the linear superposition network is proposed for rolling bearing fault diagnosis. This method improves the structure of the one-dimensional convolutional neural network (1D-CNN) by constructing linear superposition convolution blocks. At the same time, the loss function of transfer learning is constructed by using the pseudo-label of the target domain from the network, which enhances the ability of rolling bearing fault feature extraction. Compared with the traditional feature-based transfer learning methods, the proposed enhanced transfer learning method based on the linear superposition network can make the network place more stress on the feature learning of the target domain. Experimental results on the Paderborn University (PU) dataset show that, compared with the improved deep adaptation network (DAN) model, the proposed method improves the average diagnosis accuracy by 21% on six transfer tasks, showing improved bearing fault diagnostic precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sy0v0完成签到,获得积分10
1秒前
2秒前
阳光含桃完成签到,获得积分10
2秒前
善学以致用应助林秋沐采纳,获得10
2秒前
2秒前
欢语发布了新的文献求助10
2秒前
英姑应助窦匪采纳,获得10
2秒前
2秒前
所所应助科研工具人采纳,获得10
2秒前
Archy完成签到,获得积分10
2秒前
3秒前
小二郎应助热情迎彤采纳,获得10
3秒前
亚马尔完成签到,获得积分10
4秒前
英俊的铭应助shadow采纳,获得10
6秒前
6秒前
kangjie123发布了新的文献求助10
7秒前
7秒前
爆米花应助知性的友易采纳,获得10
7秒前
7秒前
兴奋中道完成签到,获得积分10
8秒前
魔幻勒发布了新的文献求助10
8秒前
丁宇卓发布了新的文献求助10
8秒前
9秒前
动听的雪碧完成签到,获得积分10
9秒前
9秒前
9秒前
Solaris完成签到,获得积分20
10秒前
WLX001完成签到 ,获得积分10
10秒前
10秒前
Akim应助GEZI采纳,获得10
11秒前
张小斌发布了新的文献求助20
11秒前
优雅的水香完成签到,获得积分10
11秒前
cherry323完成签到,获得积分10
12秒前
12秒前
zxx发布了新的文献求助30
12秒前
小鹿完成签到,获得积分10
12秒前
Shaka完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805997
求助须知:如何正确求助?哪些是违规求助? 3350835
关于积分的说明 10351617
捐赠科研通 3066714
什么是DOI,文献DOI怎么找? 1684126
邀请新用户注册赠送积分活动 809309
科研通“疑难数据库(出版商)”最低求助积分说明 765432