神经保护
小桶
免疫印迹
蛋白质组学
程序性细胞死亡
化学
分子生物学
串联质谱法
定量蛋白质组学
生物
细胞生物学
细胞凋亡
基因表达
转录组
生物化学
基因
药理学
质谱法
色谱法
作者
Yidan Zhang,Yuan Zhao,Jian Zhang,Ya Gao,Shuyue Li,Chang Cui,Guofeng Yang
标识
DOI:10.31083/j.jin2202033
摘要
Ginkgolide B (GB) possesses anti-inflammatory, antioxidant, and anti-apoptotic properties against neurotoxicity induced by amyloid beta (Aβ), but the potential neuroprotective effects of GB in Alzheimer's therapies remain elusive. We aimed to conduct proteomic analysis of Aβ1-42 induced cell injury with GB pretreatment to uncover the underlying pharmacological mechanisms of GB.Tandem mass tag (TMT) labeled liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was applied to analyze protein expression in Aβ1-42 induced mouse neuroblastoma N2a cells with or without GB pretreatment. Proteins with fold change >1.5 and p < 0.1 from two independent experiments were regarded as differentially expressed proteins (DEPs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to analyze the functional annotation information of DEPs. Two key proteins osteopontin (SPP1) and ferritin heavy chain 1 (FTH1) were validated in another three samples using western blot and quantitative real-time PCR.We identified a total of 61 DEPs in GB treated N2a cells, including 42 upregulated and 19 downregulated proteins. Bioinformatic analysis showed that DEPs mainly participated in the regulation of cell death and ferroptosis by down-regulating SPP1 protein and up-regulating FTH1 protein.Our findings demonstrate that GB treatment provides neuroprotective effects on Aβ1-42 induced cell injury, which may be related to the regulation of cell death and ferroptosis. The research puts forward new insights into the potential protein targets of GB in the treatment of Alzheimer's disease (AD).
科研通智能强力驱动
Strongly Powered by AbleSci AI