Unsupervised Cross-Modal Hashing via Semantic Text Mining

计算机科学 散列函数 相似性(几何) 人工智能 模态(人机交互) 余弦相似度 局部敏感散列 图像检索 模式识别(心理学) 语义相似性 情态动词 情报检索 自然语言处理 数据挖掘 图像(数学) 哈希表 化学 计算机安全 高分子化学
作者
Rong-Cheng Tu,Xian-Ling Mao,Qinghong Lin,Wenjin Ji,Weize Qin,Wei Wei,Heyan Huang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 8946-8957 被引量:21
标识
DOI:10.1109/tmm.2023.3243608
摘要

Cross-modal hashing has been widely used in multimedia retrieval tasks due to its fast retrieval speed and low storage cost. Recently, many deep unsupervised cross-modal hashing methods have been proposed to deal the unlabeled datasets. These methods usually construct an instance similarity matrix by fusing the image and text modality-specific similarity matrices as the guiding information to train the hashing networks. However, most of them directly use cosine similarities between the bag-of-words (BoW) vectors of text datapoints to define the text modality-specific similarity matrix, which fails to mine the semantic similarity information contained in the text modal datapoints and leads to the poor quality of the instance similarity matrix. To tackle the aforementioned problem, in this paper, we propose a novel Unsupervised Cross-modal Hashing via Semantic Text Mining, called UCHSTM. Specifically, UCHSTM first mines the correlations between the words of text datapoints. Then, UCHSTM constructs the text modality-specific similarity matrix for the training instances based on the mined correlations between their words. Next, UCHSTM fuses the image and text modality-specific similarity matrices as the final instance similarity matrix to guide the training of hashing model. Furthermore, during the process of training the hashing networks, a novel self-redefined-similarity loss is proposed to further correct some wrong defined similarities in the constructed instance similarity matrix, thereby further enhancing the retrieval performance. Extensive experiments on two widely used datasets show that the proposed UCHSTM outperforms state-of-the-art baselines on cross-modal retrieval tasks. We provide our source codes at: https://github.com/rongchengtu1/UCHTIM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bainwei完成签到,获得积分10
刚刚
淘气科研完成签到,获得积分10
1秒前
1秒前
皮皮完成签到,获得积分10
1秒前
1秒前
qinkoko完成签到,获得积分10
1秒前
mogeko完成签到,获得积分10
2秒前
Yuuuu完成签到 ,获得积分10
2秒前
橙子完成签到 ,获得积分10
2秒前
言庭兰玉完成签到,获得积分10
3秒前
那儿完成签到,获得积分10
3秒前
任性的沂完成签到,获得积分10
3秒前
ttt完成签到,获得积分10
4秒前
皮皮发布了新的文献求助10
4秒前
4秒前
学术疯子发布了新的文献求助30
5秒前
LELE完成签到 ,获得积分10
6秒前
Bioflying完成签到,获得积分10
7秒前
叶寻发布了新的文献求助30
7秒前
nature24完成签到,获得积分10
7秒前
结实的德地完成签到,获得积分10
8秒前
8秒前
优雅含莲完成签到 ,获得积分10
9秒前
热情依白完成签到 ,获得积分10
9秒前
股价发布了新的文献求助10
9秒前
ZR14124完成签到,获得积分10
10秒前
11秒前
娜尼啊完成签到,获得积分10
12秒前
sanyecai发布了新的文献求助10
12秒前
袁裘完成签到,获得积分10
12秒前
知犯何逆完成签到 ,获得积分10
13秒前
孤独的珩完成签到,获得积分10
13秒前
阳光完成签到,获得积分10
14秒前
娇气的天亦完成签到,获得积分10
14秒前
yhz完成签到,获得积分10
16秒前
了尘发布了新的文献求助10
18秒前
YUMI完成签到,获得积分10
18秒前
DingYL完成签到,获得积分10
19秒前
大卓神完成签到,获得积分10
19秒前
想多睡会儿完成签到,获得积分10
19秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804299
求助须知:如何正确求助?哪些是违规求助? 3349099
关于积分的说明 10341704
捐赠科研通 3065225
什么是DOI,文献DOI怎么找? 1682994
邀请新用户注册赠送积分活动 808587
科研通“疑难数据库(出版商)”最低求助积分说明 764620