The Role of Deep Learning in Parking Space Identification and燩rediction燬ystems

鉴定(生物学) 计算机科学 交通拥挤 空格(标点符号) 突出 停车位 运输工程 停车指引和信息 工作(物理) 人工智能 工程类 植物 机械工程 生物 操作系统
作者
Faizan Rasheed,Yasir Saleem,Kok‐Lim Alvin Yau,Yung-Wey Chong,Sye Loong Keoh
出处
期刊:Computers, materials & continua 卷期号:75 (1): 761-784 被引量:2
标识
DOI:10.32604/cmc.2023.034988
摘要

In today's smart city transportation, traffic congestion is a vexing issue, and vehicles seeking parking spaces have been identified as one of the causes leading to approximately 40% of traffic congestion. Identifying parking spaces alone is insufficient because an identified available parking space may have been taken by another vehicle when it arrives, resulting in the driver's frustration and aggravating traffic jams while searching for another parking space. This explains the need to predict the availability of parking spaces. Recently, deep learning (DL) has been shown to facilitate drivers to find parking spaces efficiently, leading to a promising performance enhancement in parking identification and prediction systems. However, no work reviews DL approaches applied to solve parking identification and prediction problems. Inspired by this gap, the purpose of this work is to investigate, highlight, and report on recent advances in DL approaches applied to predict and identify the availability of parking spaces. A taxonomy of DL-based parking identification and prediction systems is established as a methodology by classifying and categorizing existing literature, and by doing so, the salient and supportive features of different DL techniques for providing parking solutions are presented. Moreover, several open research challenges are outlined. This work identifies that there are various DL architectures, datasets, and performance measures used to address parking identification and prediction problems. Moreover, there are some open-source implementations available that can be used directly either to extend existing works or explore a new domain. This is the first short survey article that focuses on the use of DL-based techniques in parking identification and prediction systems for smart cities. This study concludes that although the deployment of DL in parking identification and prediction systems provides various benefits, the convergence of these two types of systems and DL brings about new issues that must be resolved in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bluesky完成签到,获得积分10
刚刚
eagle14835发布了新的文献求助50
1秒前
2秒前
2秒前
小天才123完成签到,获得积分20
3秒前
jiaying_Z发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
小酥肉完成签到,获得积分10
5秒前
诗轩发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
caohuijun发布了新的文献求助10
7秒前
织安完成签到,获得积分10
7秒前
英俊的铭应助此晴可待采纳,获得10
8秒前
慕容博发布了新的文献求助10
8秒前
夏尔酱发布了新的文献求助10
8秒前
细腻的秋天完成签到 ,获得积分10
10秒前
漓汐发布了新的文献求助10
10秒前
mint发布了新的文献求助30
11秒前
李健应助无言采纳,获得10
12秒前
刘慧敏关注了科研通微信公众号
13秒前
13秒前
Lucas应助王美贤采纳,获得10
14秒前
14秒前
Hello应助zhaoyuanqing采纳,获得10
15秒前
韩冬梅完成签到,获得积分10
15秒前
dtf完成签到,获得积分10
17秒前
星辰大海应助朴素鸽子采纳,获得10
17秒前
18秒前
18秒前
乐乐应助创新采纳,获得10
19秒前
CodeCraft应助夏尔酱采纳,获得10
20秒前
supermmm发布了新的文献求助50
20秒前
whyo完成签到,获得积分20
20秒前
粗心的邴完成签到 ,获得积分10
20秒前
ywl完成签到,获得积分10
20秒前
21秒前
21秒前
Lizhe123完成签到,获得积分20
22秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3875983
求助须知:如何正确求助?哪些是违规求助? 3418672
关于积分的说明 10709896
捐赠科研通 3143276
什么是DOI,文献DOI怎么找? 1734289
邀请新用户注册赠送积分活动 836698
科研通“疑难数据库(出版商)”最低求助积分说明 782776