反事实思维
因果推理
反事实条件
土地利用、土地利用的变化和林业
因果关系
推论
土地利用
因果模型
心理干预
计算机科学
环境资源管理
计量经济学
经济
心理学
政治学
生态学
数学
人工智能
社会心理学
统计
生物
精神科
法学
作者
Nicholas R. Magliocca,Pratik Dhungana,Carter D. Sink
标识
DOI:10.1080/1747423x.2023.2173325
摘要
Land change models are important tools for land systems analysis, but their potential for causal inference using a counterfactual approach remains underdeveloped. This paper reviews the state of counterfactual land change modeling with the intent of causal inference. All of the reviewed studies promoted the value of creating 'counterfactual worlds' via simulation modeling to untangle complex causation in land systems in order to assess the effects of specific interventions and/or historical events. Several models used counterfactual analysis to challenge prevailing assumptions motivating past policy interventions, while others isolated the spatial heterogeneity of policy effects. The review also highlights methodological limitations and proposes best practices specific to counterfactual land change modeling for causal inference, such as ensemble approaches and multiple calibration-validation iterations. Counterfactual modeling is still underdeveloped in land system science, but it holds promise for advancing causal inference for some of the most challenging to study land change phenomenon.
科研通智能强力驱动
Strongly Powered by AbleSci AI