Semantic stereo visual SLAM toward outdoor dynamic environments based on ORB-SLAM2

计算机科学 人工智能 计算机视觉 同时定位和映射 束流调整 特征(语言学) 弹道 集合(抽象数据类型) Orb(光学) 姿势 分割 机器人 图像(数学) 移动机器人 语言学 哲学 物理 天文 程序设计语言
作者
Yawen Li,Guangming Song,Shuang Hao,Juzheng Mao,Aiguo Song
出处
期刊:Industrial Robot-an International Journal [Emerald Publishing Limited]
卷期号:50 (3): 542-554 被引量:2
标识
DOI:10.1108/ir-09-2022-0236
摘要

Purpose The prerequisite for most traditional visual simultaneous localization and mapping (V-SLAM) algorithms is that most objects in the environment should be static or in low-speed locomotion. These algorithms rely on geometric information of the environment and restrict the application scenarios with dynamic objects. Semantic segmentation can be used to extract deep features from images to identify dynamic objects in the real world. Therefore, V-SLAM fused with semantic information can reduce the influence from dynamic objects and achieve higher accuracy. This paper aims to present a new semantic stereo V-SLAM method toward outdoor dynamic environments for more accurate pose estimation. Design/methodology/approach First, the Deeplabv3+ semantic segmentation model is adopted to recognize semantic information about dynamic objects in the outdoor scenes. Second, an approach that combines prior knowledge to determine the dynamic hierarchy of moveable objects is proposed, which depends on the pixel movement between frames. Finally, a semantic stereo V-SLAM based on ORB-SLAM2 to calculate accurate trajectory in dynamic environments is presented, which selects corresponding feature points on static regions and eliminates useless feature points on dynamic regions. Findings The proposed method is successfully verified on the public data set KITTI and ZED2 self-collected data set in the real world. The proposed V-SLAM system can extract the semantic information and track feature points steadily in dynamic environments. Absolute pose error and relative pose error are used to evaluate the feasibility of the proposed method. Experimental results show significant improvements in root mean square error and standard deviation error on both the KITTI data set and an unmanned aerial vehicle. That indicates this method can be effectively applied to outdoor environments. Originality/value The main contribution of this study is that a new semantic stereo V-SLAM method is proposed with greater robustness and stability, which reduces the impact of moving objects in dynamic scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不想再哭发布了新的文献求助10
1秒前
1秒前
ice完成签到,获得积分10
1秒前
1秒前
fenglinyi发布了新的文献求助10
1秒前
2秒前
3秒前
浅帅发布了新的文献求助10
3秒前
魔幻蓉发布了新的文献求助10
3秒前
搜集达人应助阳光科研汪采纳,获得10
3秒前
toppi发布了新的文献求助20
4秒前
5秒前
Lynette完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
13333完成签到 ,获得积分10
7秒前
四季雪完成签到,获得积分10
7秒前
7秒前
7秒前
一颗苹果应助li采纳,获得10
8秒前
杨咩咩发布了新的文献求助10
8秒前
8秒前
pxin发布了新的文献求助10
8秒前
对苏发布了新的文献求助400
9秒前
噜噜晓发布了新的文献求助10
9秒前
飞鸟完成签到,获得积分10
10秒前
10秒前
campus发布了新的文献求助10
11秒前
11秒前
天道酬勤完成签到,获得积分10
11秒前
Hann发布了新的文献求助10
11秒前
zgq987发布了新的文献求助10
11秒前
11秒前
小陈发布了新的文献求助10
11秒前
飞鸟发布了新的文献求助10
12秒前
Meyako应助谨慎小懒猪采纳,获得10
13秒前
初见完成签到 ,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4290508
求助须知:如何正确求助?哪些是违规求助? 3817689
关于积分的说明 11955448
捐赠科研通 3461372
什么是DOI,文献DOI怎么找? 1898506
邀请新用户注册赠送积分活动 947118
科研通“疑难数据库(出版商)”最低求助积分说明 849985