光合作用
生物
作物
产量(工程)
高光谱成像
光合色素
粮食安全
作物产量
农业工程
人工智能
农学
计算机科学
植物
农业
生态学
工程类
物理
热力学
作者
Ressin Varghese,Aswani Kumar Cherukuri,Nicholas H. Doddrell,C. George Priya Doss,Andrew J. Simkin,Siva Ramamoorthy
出处
期刊:Plant Science
[Elsevier]
日期:2023-07-18
卷期号:335: 111795-111795
被引量:16
标识
DOI:10.1016/j.plantsci.2023.111795
摘要
Improving photosynthesis is a promising avenue to increase food security. Studying photosynthetic traits with the aim to improve efficiency has been one of many strategies to increase crop yield but analyzing large data sets presents an ongoing challenge. Machine learning (ML) represents a ubiquitous tool that can provide a more elaborate data analysis. Here we review the application of ML in various domains of photosynthetic research, as well as in photosynthetic pigment studies. We highlight how correlating hyperspectral data with photosynthetic parameters to improve crop yield could be achieved through various ML algorithms. We also propose strategies to employ ML in promoting photosynthetic pigment research for furthering crop yield.
科研通智能强力驱动
Strongly Powered by AbleSci AI