Damage mode classification in CFRP laminates using convolutional autoencoder and convolutional neural network on acoustic emission waveforms

自编码 卷积神经网络 声发射 波形 材料科学 模式(计算机接口) 声学 计算机科学 复合材料 人工神经网络 人工智能 物理 电信 操作系统 雷达
作者
Yelamarthi Sai Krishna,Gangadharan Raju,Maunendra Sankar Desarkar
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241298403
摘要

The acoustic emission (AE) technique is a widely used nondestructive method for in-situ health monitoring of composite structures. Unlike metals, failure mechanisms in composite structures are complex, involving multiple damage modes, and each damage mode has a distinct AE signature. This work uses deep learning algorithms called convolutional autoencoder (CAE) and convolutional neural network (CNN) to classify damage modes in carbon fiber-reinforced polymer laminates using AE waveforms. Tensile experiments are carried out on laminates of various stacking sequences, and the acquired raw AE waveforms are transformed into time-frequency planes called spectrograms using short-time Fourier transform. CAE is used for retrieving deep features associated with damage modes in the latent space from these spectrograms. Subsequently, k-means is used to cluster the deep features in the latent space. Each cluster is labeled with a damage mode by inspecting their damage signatures using the scalograms. This labeled data is then used to train the CNN. The CNN, once trained is used on the AE data of pristine and notched quasi-isotropic specimens, and its ability to classify and identify the damage modes is investigated. The trained CNN achieves satisfactory classification accuracy of 96.9% on pristine quasi-isotropic specimen data and 96.4% on notched quasi-isotropic specimen data. When compared to the prediction accuracy of pure damage modes, the prediction accuracy of mixed-mode damage is slightly lower, at 92.5% for pristine and 91.3% for notched quasi-isotropic specimens. This reduction in accuracy is due to the spectrograms of mixed-mode damage containing energy distributed across multiple frequency bands. By classifying the AE waveforms of both pristine and notched quasi-isotropic specimens, the progression of different damage modes is analyzed through the cumulative count of AE waveforms associated with each damage type. These findings enhance the understanding of damage mode evolution in composite structures and contribute to structural health monitoring studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助马桶盖盖子采纳,获得10
刚刚
1秒前
上官若男应助hwezhu采纳,获得10
1秒前
Stalin完成签到,获得积分10
2秒前
遥感小虫发布了新的文献求助10
2秒前
科研通AI5应助暗月皇采纳,获得10
3秒前
深情安青应助DIDIDI采纳,获得10
3秒前
xiexie完成签到,获得积分10
5秒前
6秒前
xi完成签到 ,获得积分10
6秒前
FOLY发布了新的文献求助10
6秒前
HAHA_完成签到,获得积分10
6秒前
8秒前
遥感小虫完成签到,获得积分10
10秒前
Li应助Ytgl采纳,获得10
10秒前
10秒前
hwezhu发布了新的文献求助10
12秒前
12秒前
Cherish应助lily336699采纳,获得10
13秒前
honghong1992完成签到,获得积分10
13秒前
寒冷的奇异果完成签到,获得积分10
13秒前
幸福的鑫鹏完成签到,获得积分10
13秒前
jojo发布了新的文献求助30
13秒前
小孟吖完成签到 ,获得积分10
14秒前
pluto应助Ryan采纳,获得50
14秒前
大旭发布了新的文献求助10
14秒前
15秒前
16秒前
17秒前
wanci应助着急的小松鼠采纳,获得10
17秒前
18秒前
19秒前
jojo完成签到,获得积分10
20秒前
拒马发布了新的文献求助10
21秒前
默默的白开水完成签到 ,获得积分10
22秒前
Zero完成签到,获得积分10
23秒前
树树完成签到,获得积分10
23秒前
沉默白羊发布了新的文献求助10
25秒前
25秒前
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781157
求助须知:如何正确求助?哪些是违规求助? 3326652
关于积分的说明 10227891
捐赠科研通 3041760
什么是DOI,文献DOI怎么找? 1669590
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751