Multi-Scale Group Agent Attention-based Graph Convolutional Decoding Networks for 2D Medical Image Segmentation

计算机科学 图像分割 解码方法 人工智能 分割 图形 比例(比率) 计算机视觉 模式识别(心理学) 理论计算机科学 算法 地图学 地理
作者
Zhichao Wang,Lin Guo,Shuchang Zhao,Shiqing Zhang,Xiaoming Zhao,Jiangxiong Fang,Guoyu Wang,Hongsheng Lu,Jun Yu,Qi Tian
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/jbhi.2024.3523112
摘要

Automated medical image segmentation plays a crucial role in assisting doctors in diagnosing diseases. Feature decoding is a critical yet challenging issue for medical image segmentation. To address this issue, this work proposes a novel feature decoding network, called multi-scale group agent attention-based graph convolutional decoding networks (MSGAA-GCDN), to learn local-global features in graph structures for 2D medical image segmentation. The proposed MSGAA-GCDN combines graph convolutional network (GCN) and a lightweight multi-scale group agent attention (MSGAA) mechanism to represent features globally and locally within a graph structure. Moreover, in skip connections a simple yet efficient attention-based upsampling convolution fusion (AUCF) module is designed to enhance encoder-decoder feature fusion in both channel and spatial dimensions. Extensive experiments are conducted on three typical medical image segmentation tasks, namely Synapse abdominal multi-organs, Cardiac organs, and Polyp lesions. Experimental results demonstrate that the proposed MSGAA-GCDN outperforms the state-of-the-art methods, and the designed MSGAA is a lightweight yet effective attention architecture. The proposed MSGAA-GCDN can be easily taken as a plug-and-play decoder cascaded with other encoders for general medical image segmentation tasks. The implementation code is available at https://github.com/wangzhichao123/MSGAA-GCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
武广敏完成签到,获得积分10
1秒前
东皇太一完成签到,获得积分10
1秒前
安安应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得30
1秒前
1秒前
结实大象发布了新的文献求助10
2秒前
2秒前
布布爱吃炸鸡完成签到,获得积分10
2秒前
2秒前
ygg完成签到,获得积分10
4秒前
快乐战神没烦恼完成签到,获得积分10
4秒前
打打应助VincentZ采纳,获得10
4秒前
excellent发布了新的文献求助10
5秒前
yong发布了新的文献求助10
5秒前
海藻发布了新的文献求助10
5秒前
acarbose发布了新的文献求助100
6秒前
闲听花落完成签到 ,获得积分10
6秒前
卡卡龍特完成签到,获得积分10
6秒前
两张完成签到,获得积分10
6秒前
SYLH应助天天向上采纳,获得10
7秒前
7秒前
hygge完成签到,获得积分10
7秒前
Wayne完成签到,获得积分0
8秒前
材料若饥完成签到,获得积分10
8秒前
8秒前
风起青禾完成签到,获得积分10
9秒前
两张发布了新的文献求助10
9秒前
桥豆麻袋完成签到,获得积分10
9秒前
9秒前
大气的火龙果完成签到 ,获得积分10
9秒前
10秒前
Orange应助乐观的阿这采纳,获得10
10秒前
芒果完成签到,获得积分10
10秒前
hxzhou完成签到,获得积分10
11秒前
yuzhu完成签到,获得积分10
11秒前
jj完成签到,获得积分10
11秒前
4Peace发布了新的文献求助30
11秒前
11秒前
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785225
求助须知:如何正确求助?哪些是违规求助? 3330781
关于积分的说明 10248184
捐赠科研通 3046175
什么是DOI,文献DOI怎么找? 1671900
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868