Multi-Scale Group Agent Attention-based Graph Convolutional Decoding Networks for 2D Medical Image Segmentation

计算机科学 图像分割 解码方法 人工智能 分割 图形 比例(比率) 计算机视觉 模式识别(心理学) 理论计算机科学 算法 地图学 地理
作者
Zhichao Wang,Lin Guo,Shuchang Zhao,Shiqing Zhang,Xiaoming Zhao,Jiangxiong Fang,Guoyu Wang,Hongsheng Lu,Jun Yu,Qi Tian
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:4
标识
DOI:10.1109/jbhi.2024.3523112
摘要

Automated medical image segmentation plays a crucial role in assisting doctors in diagnosing diseases. Feature decoding is a critical yet challenging issue for medical image segmentation. To address this issue, this work proposes a novel feature decoding network, called multi-scale group agent attention-based graph convolutional decoding networks (MSGAA-GCDN), to learn local-global features in graph structures for 2D medical image segmentation. The proposed MSGAA-GCDN combines graph convolutional network (GCN) and a lightweight multi-scale group agent attention (MSGAA) mechanism to represent features globally and locally within a graph structure. Moreover, in skip connections a simple yet efficient attention-based upsampling convolution fusion (AUCF) module is designed to enhance encoder-decoder feature fusion in both channel and spatial dimensions. Extensive experiments are conducted on three typical medical image segmentation tasks, namely Synapse abdominal multi-organs, Cardiac organs, and Polyp lesions. Experimental results demonstrate that the proposed MSGAA-GCDN outperforms the state-of-the-art methods, and the designed MSGAA is a lightweight yet effective attention architecture. The proposed MSGAA-GCDN can be easily taken as a plug-and-play decoder cascaded with other encoders for general medical image segmentation tasks. The implementation code is available at https://github.com/wangzhichao123/MSGAA-GCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
薛娥发布了新的文献求助10
刚刚
1秒前
1秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得30
2秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
如常发布了新的文献求助10
4秒前
小马甲应助王柯采纳,获得10
5秒前
5秒前
传奇3应助tt采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
rain发布了新的文献求助10
9秒前
脑洞疼应助健壮的夕阳采纳,获得10
9秒前
刘科研完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
柔弱晓蓝发布了新的文献求助10
11秒前
薛娥完成签到,获得积分10
12秒前
万能图书馆应助66668888采纳,获得10
14秒前
14秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
yhhhhhhh2024发布了新的文献求助10
19秒前
Akim应助ing采纳,获得10
21秒前
Yan1961发布了新的文献求助10
21秒前
21秒前
Demon_Yi完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4663408
求助须知:如何正确求助?哪些是违规求助? 4045245
关于积分的说明 12512677
捐赠科研通 3737675
什么是DOI,文献DOI怎么找? 2064020
邀请新用户注册赠送积分活动 1093616
科研通“疑难数据库(出版商)”最低求助积分说明 974288