清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction and Explanation of Properties in Multicomponent Polyurethane Elastomers: Integrating Molecular Dynamics and Machine Learning

弹性体 分子动力学 聚氨酯 高分子科学 材料科学 高分子化学 计算机科学 化学 复合材料 计算化学
作者
Yujiang Meng,Yaling Lin,Anqiang Zhang
出处
期刊:Macromolecules [American Chemical Society]
标识
DOI:10.1021/acs.macromol.4c02559
摘要

Establishing quantitative connections among the chemical composition, molecular structure, and macroscopic properties of multicomponent polyurethane elastomers remains a challenging task. Molecular dynamics (MD) has been extensively utilized in the study of various materials and serves as a crucial tool for exploring the relationship between structure and properties. However, the intricate modeling process and lengthy computation times associated with the MD method complicate the attainment of complex combinatorial results for the various components of polyurethane elastomers. Machine learning (ML) offers a solution by integrating and analyzing existing data, along with the capability to predict new outcomes. Consequently, we combine MD and ML methods to conduct a comprehensive investigation of multicomponent polyurethane elastomers. MD simulations indicate the presence of various types of hydrogen bonds within the elastic matrix of polyurethane, and the strong hydrogen bonds formed in the hard segments significantly affect the tensile properties of material. While the incorporation of long molecular chains in the soft segments enhances the material's flexibility, it simultaneously diminishes its tensile strength. Feature engineering techniques, including parametric representation and feature screening of the MD model, were employed to create a data set suitable for ML applications. The application of the interpretable ML method has demonstrated that the number of hydrogen bonds in the hard segment is regulated by the hydrogen bond donor and acceptor, while the rotatable bonds in the soft segment are the primary characteristics contributing to the material's flexibility and are also key factors that regulate the number of free hydrogen bonds. This integration of MD and ML methods not only enhances predictive capabilities for novel polyurethane elastomers but also facilitates quantitative analysis of how microstructural characteristics affect macroscopic properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老木虫发布了新的文献求助10
2秒前
Noah完成签到 ,获得积分0
3秒前
ewind完成签到 ,获得积分10
9秒前
天青色等烟雨完成签到 ,获得积分10
13秒前
谢陈完成签到 ,获得积分10
19秒前
23秒前
七人七发布了新的文献求助10
26秒前
现代完成签到,获得积分10
30秒前
35秒前
Akim应助科研通管家采纳,获得10
41秒前
41秒前
科研通AI5应助Jasmine采纳,获得10
43秒前
xuuuuu完成签到,获得积分10
45秒前
cugwzr完成签到,获得积分10
46秒前
57秒前
乐观海云完成签到 ,获得积分10
1分钟前
Lexi完成签到 ,获得积分10
1分钟前
1分钟前
我有一只羊完成签到,获得积分10
1分钟前
1分钟前
老木虫发布了新的文献求助10
1分钟前
hadfunsix完成签到 ,获得积分10
1分钟前
guhao完成签到 ,获得积分10
1分钟前
1分钟前
艳艳宝完成签到 ,获得积分10
1分钟前
紫金之巅完成签到 ,获得积分10
1分钟前
唐瑚芦完成签到 ,获得积分10
1分钟前
墨墨完成签到 ,获得积分10
1分钟前
ESC惠子子子子子完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
铜豌豆完成签到 ,获得积分10
1分钟前
1分钟前
姚芭蕉完成签到 ,获得积分0
1分钟前
紫荆完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
庄怀逸完成签到 ,获得积分10
2分钟前
2分钟前
典雅三颜完成签到 ,获得积分10
2分钟前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Feminist Explorations of Urban China 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830505
求助须知:如何正确求助?哪些是违规求助? 3372816
关于积分的说明 10475500
捐赠科研通 3092653
什么是DOI,文献DOI怎么找? 1702254
邀请新用户注册赠送积分活动 818839
科研通“疑难数据库(出版商)”最低求助积分说明 771101