Impacts of Different Satellite‐Based Precipitation Signature Errors on Hydrological Modeling Performance Across China

降水 环境科学 气候学 卫星 签名(拓扑) 中国 气象学 地理 地质学 数学 几何学 工程类 航空航天工程 考古
作者
Chiyuan Miao,Jiaojiao Gou,Jinlong Hu,Qingyun Duan
出处
期刊:Earth’s Future [American Geophysical Union]
卷期号:12 (11)
标识
DOI:10.1029/2024ef004954
摘要

Abstract The quasi‐global availability of satellite‐based precipitation products (SPPs) holds significant potential for improving hydrological modeling skill. However, limited knowledge exists concerning the impacts of different SPP error type on hydrological modeling skill and their sensitivity across different climate zones. In this study, forcing data sets from 10 SPPs were collected to drive hydrological models during the period 2001–2018 for 366 catchments across China. Here, we analyze the impact of the SPP errors associated with different precipitation intensities (light, moderate, and heavy) and different precipitation signatures (magnitude, variance, and occurrence) on the performance of hydrological simulations, and rank the sensitivities of SPPs errors for four major Köppen‐Geiger climate zones. The results show that heavy precipitation in SPPs is generally associated with higher errors than light and moderate precipitation when compared to gauge‐based precipitation observations, but hydrological model skill is more sensitive to errors from moderate precipitation than from heavy precipitation. The probability of moderate precipitation detection was identified as the most sensitive metric in determining hydrological model performance, with sensitivities of 0.58, 0.39, 0.59, and 0.47 in the temperate, boreal, arid, and highland climate zones, respectively. The variance error and magnitude error for heavy precipitation from SPPs were also identified as sensitive factors for hydrological modeling in the temperate and arid climate zones, respectively. These findings are crucial for enhancing the understanding of interactions between SPPs uncertainty and hydrological simulations, leading to improved data accuracy of precipitation forcing and the identification of appropriate SPPs for hydrological simulation in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周周周周周完成签到,获得积分10
刚刚
壮观妖妖完成签到,获得积分10
刚刚
刚刚
jfz完成签到,获得积分10
1秒前
天玄发布了新的文献求助10
2秒前
科研通AI5应助li采纳,获得10
2秒前
2秒前
万能图书馆应助仲夏采纳,获得10
3秒前
羽墨空空发布了新的文献求助10
4秒前
5秒前
桐桐应助活泼的觅云采纳,获得10
5秒前
江月年完成签到 ,获得积分10
6秒前
7秒前
Cloud发布了新的文献求助10
7秒前
多情dingding完成签到,获得积分10
7秒前
8秒前
张三发布了新的文献求助10
8秒前
gapper完成签到 ,获得积分10
9秒前
狼宝完成签到,获得积分10
9秒前
10秒前
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
娟娟加油完成签到 ,获得积分10
11秒前
123应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
打打应助奥特超曼采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
k123456应助科研通管家采纳,获得10
12秒前
12秒前
XUwin应助科研通管家采纳,获得20
12秒前
123应助科研通管家采纳,获得10
12秒前
辉子完成签到,获得积分10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799882
求助须知:如何正确求助?哪些是违规求助? 3345154
关于积分的说明 10324069
捐赠科研通 3061756
什么是DOI,文献DOI怎么找? 1680519
邀请新用户注册赠送积分活动 807129
科研通“疑难数据库(出版商)”最低求助积分说明 763462