可解释性
计算机科学
鉴定(生物学)
机器学习
人工神经网络
计算生物学
图形
深度学习
基因调控网络
基因
可扩展性
人工智能
生物
遗传学
理论计算机科学
基因表达
植物
数据库
作者
Hao Zhang,Chaohuan Lin,Y. Chen,Xixi Shen,Ruizhe Wang,Yiqi Chen,Jie Lyu
摘要
ABSTRACT Cancer is a complex disease driven by mutations in the genes that play critical roles in cellular processes. The identification of cancer driver genes is crucial for understanding tumorigenesis, developing targeted therapies and identifying rational drug targets. Experimental identification and validation of cancer driver genes are time‐consuming and costly. Studies have demonstrated that interactions among genes are associated with similar phenotypes. Therefore, identifying cancer driver genes using molecular network‐based approaches is necessary. Molecular network‐based random walk‐based approaches, which integrate mutation data with protein–protein interaction networks, have been widely employed in predicting cancer driver genes and demonstrated robust predictive potential. However, recent advancements in deep learning, particularly graph‐based models, have provided novel opportunities for enhancing the prediction of cancer driver genes. This review aimed to comprehensively explore how machine learning methodologies, particularly network propagation, graph neural networks, autoencoders, graph embeddings, and attention mechanisms, improve the scalability and interpretability of molecular network‐based cancer gene prediction.
科研通智能强力驱动
Strongly Powered by AbleSci AI