Covalent Organic Framework Nanohydrogel‐Based Oxidase‐Mimicking Nanozyme for Photocatalytic Antibacterial Therapy

共价键 光催化 化学 有机化学 催化作用
作者
Xin Tao,Zijun Fang,Ruijian Shao,Jiarui Hu,Hui Cheng,Shijie Zhu,Xiaoyan Wang,Hongbo Yu,Bien Tan,Chun Zhang
出处
期刊:Angewandte Chemie [Wiley]
卷期号:64 (41): e202513754-e202513754 被引量:5
标识
DOI:10.1002/anie.202513754
摘要

Abstract Water‐soluble nanozymes have the potential to overcome the limitations of low catalytic efficiency of most heterogeneous nanozymes in aqueous solutions and further expand their applications in the biomedical field, but with significant synthetic challenges. Here we report an oxidase‐mimicking water‐soluble nanozyme based on zinc porphyrin‐based covalent organic framework nanohydrogel (Zn‐COF‐NHG) for photocatalytic antibacterial. The in situ atom transfer radical polymerization (ATRP) of poly(N‐isopropylacrylamide) (PNIPAM) on scaffold of Zn‐COF results in the exfoliation of crystalline COF nanosheets and assembly into nanohydrogels in aqueous solution. The obtained Zn‐COF‐NHG can effectively mimic photoresponsive oxidase‐like activity for the chromogenic catalysis of 3,3′,5,5′‐tetramethylbenzidine (TMB) by facilitating homogeneous behavior to enhance catalytic efficiency, while also exhibiting intelligent temperature‐response regulation of catalytic oxidation activity. Moreover, the high photodynamic production of reactive oxygen species (ROS) and the reinforcement of binding to the exterior of bacteria through noncovalent interactions concurrently boost its bactericidal activity against Escherichia coli ( E. coli ) and Staphylococcus aureus ( S. aureus ) by amplifying oxidative stress. In vivo study on S. aureus ‐infected murine model further substantiates the superior wound disinfection and healing effect of Zn‐COF‐NHG. Our work paves a way for the utilization of COF nanohydrogel as a potent antibacterial nanozyme agent and provides a novel platform for the development of biomedical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眯眯眼的钢笔完成签到,获得积分10
刚刚
铁树发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
SUSTCRJ发布了新的文献求助10
1秒前
1秒前
zhenjl发布了新的文献求助10
1秒前
1秒前
三二完成签到,获得积分10
2秒前
3秒前
NexusExplorer应助枯荣采纳,获得10
3秒前
xuexia发布了新的文献求助30
3秒前
3秒前
3秒前
Ava应助xtlx采纳,获得10
3秒前
声声完成签到,获得积分10
3秒前
3秒前
科研通AI6应助幽默尔蓝采纳,获得10
3秒前
4秒前
4秒前
银月完成签到,获得积分10
4秒前
moumou完成签到 ,获得积分10
4秒前
科研通AI6应助平淡白梦采纳,获得10
4秒前
4秒前
尕翠完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
大个应助micaixing2006采纳,获得10
6秒前
李爱国应助Quhang采纳,获得10
6秒前
Kay76发布了新的文献求助10
6秒前
7秒前
Cyber_relic发布了新的文献求助10
7秒前
7秒前
PDL1完成签到,获得积分10
7秒前
fanature发布了新的文献求助30
8秒前
桐桐应助雪白小丸子采纳,获得30
8秒前
淑儿哥哥发布了新的文献求助10
8秒前
求助人员发布了新的文献求助10
8秒前
8秒前
chigga完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647599
求助须知:如何正确求助?哪些是违规求助? 4773824
关于积分的说明 15040250
捐赠科研通 4806401
什么是DOI,文献DOI怎么找? 2570250
邀请新用户注册赠送积分活动 1527084
关于科研通互助平台的介绍 1486162