催化作用
氧还原反应
杰纳斯
Atom(片上系统)
对偶(语法数字)
还原(数学)
活动中心
化学
氧气
氧还原
氧原子
中心(范畴论)
材料科学
光化学
纳米技术
结晶学
物理化学
生物化学
计算机科学
有机化学
分子
电化学
艺术
几何学
文学类
数学
电极
嵌入式系统
作者
Long‐Ji Yuan,Z. L. Miao,Xu‐Lei Sui,Chi‐Feng Lee,Qi Li,Maosheng Yin,Lixiao Shen,Ying‐Rui Lu,Zigang Zhao,Yuzhe Liu,L. X. Zhu,Wei Gong,Wen-Liang Feng,Hsiao‐Tsu Wang,Guoxu Zhang,Zhen‐Bo Wang
标识
DOI:10.1038/s41467-025-62728-4
摘要
Dual-atom catalysts (DACs) represent a frontier in heterogeneous electrocatalysis for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. However, the dynamic evolution of active-site structure complicates mechanistic understanding. Herein, alloyed Fe-Co DACs with strong Fe-Co bonds are synthesized via molecular chelation and ionic coupling strategies. In-situ spectroscopy combined with theoretical calculation reveals the Janus effect of Fe-Co dual-atom sites: Co serves as the primary catalytic center for the 4e- process with Fe as the cooperative sites to absorb the *OH. This division-of-labor mechanism lowers the theoretical overpotential from 1.14 V to 0.43 V for acidic oxygen reduction reaction. Thus, the catalyst achieves a 0.852 V half-wave potential and 1.14 W cm-2 power density (2.0 bar H₂-O₂), sustaining 81% peak power after 10,000 cycles. These findings clarify DAC configuration-mechanism relationships, guiding the design of high-performance DACs.
科研通智能强力驱动
Strongly Powered by AbleSci AI