Toward Effective Knowledge Distillation: Navigating Beyond Small-Data Pitfall

作者
Zhiwei Hao,Jianyuan Guo,Kai Han,Han Hu,Chang Xu,Yunhe Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:48 (1): 542-556
标识
DOI:10.1109/tpami.2025.3607982
摘要

The spectacular success of training large models on extensive datasets highlights the potential of scaling up for exceptional performance. To deploy these models on edge devices, knowledge distillation (KD) is commonly used to create a compact model from a larger, pretrained teacher model. However, as models and datasets rapidly scale up in practical applications, it is crucial to consider the applicability of existing KD approaches originally designed for limited-capacity architectures and small-scale datasets. In this paper, we revisit current KD methods and identify the presence of a small-data pitfall, where most modifications to vanilla KD prove ineffective on large-scale datasets. To guide the design of consistently effective KD methods across different data scales, we conduct a meticulous evaluation of the knowledge transfer process. Our findings reveal that incorporating more useful information is crucial for achieving consistently effective KD methods, while modifications in loss functions show relatively less significance. In light of this, we present a paradigmatic example that combines vanilla KD with deep supervision, incorporating additional information into the student during distillation. This approach surpasses almost all recent KD methods. We believe our study will offer valuable insights to guide the community in navigating beyond the small-data pitfall and toward consistently effective KD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
NSZM980504发布了新的文献求助10
1秒前
科研通AI6应助w2采纳,获得10
1秒前
aertom完成签到,获得积分10
1秒前
罗明明发布了新的文献求助10
2秒前
Almond完成签到,获得积分10
2秒前
桐桐应助H里波特采纳,获得10
2秒前
英姑应助安静的冰蓝采纳,获得10
2秒前
2秒前
领导范儿应助怕黑的飞柏采纳,获得10
2秒前
2秒前
3秒前
3秒前
HOAN应助火星上的书芹采纳,获得30
3秒前
3秒前
3秒前
kingripple完成签到,获得积分10
3秒前
hua发布了新的文献求助10
3秒前
O椰发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
jiaman1031发布了新的文献求助10
4秒前
4秒前
4秒前
脑洞疼应助罗新燕采纳,获得10
5秒前
lily发布了新的文献求助10
5秒前
5秒前
韩明轩发布了新的文献求助10
5秒前
5秒前
mjtsurgery发布了新的文献求助10
5秒前
wang发布了新的文献求助10
5秒前
daisy完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
登山逐浪完成签到,获得积分10
6秒前
12123ray完成签到,获得积分10
6秒前
zhq发布了新的文献求助10
6秒前
7秒前
Yatagarasu完成签到,获得积分10
7秒前
贼贼完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668030
求助须知:如何正确求助?哪些是违规求助? 4889242
关于积分的说明 15123064
捐赠科研通 4826923
什么是DOI,文献DOI怎么找? 2584432
邀请新用户注册赠送积分活动 1538259
关于科研通互助平台的介绍 1496590