Learning robust autonomous navigation and locomotion for wheeled-legged robots

适应性 地形 机器人 稳健性(进化) 计算机科学 运动规划 导航系统 控制器(灌溉) 强化学习 移动机器人 人工智能 模拟 控制工程 工程类 生态学 生物化学 化学 生物 农学 基因
作者
Joonho Lee,Marko Bjelonic,Alexander Reske,Lorenz Wellhausen,Takahiro Miki,Marco Hutter
出处
期刊:Science robotics [American Association for the Advancement of Science]
卷期号:9 (89) 被引量:7
标识
DOI:10.1126/scirobotics.adi9641
摘要

Autonomous wheeled-legged robots have the potential to transform logistics systems, improving operational efficiency and adaptability in urban environments. Navigating urban environments, however, poses unique challenges for robots, necessitating innovative solutions for locomotion and navigation. These challenges include the need for adaptive locomotion across varied terrains and the ability to navigate efficiently around complex dynamic obstacles. This work introduces a fully integrated system comprising adaptive locomotion control, mobility-aware local navigation planning, and large-scale path planning within the city. Using model-free reinforcement learning (RL) techniques and privileged learning, we develop a versatile locomotion controller. This controller achieves efficient and robust locomotion over various rough terrains, facilitated by smooth transitions between walking and driving modes. It is tightly integrated with a learned navigation controller through a hierarchical RL framework, enabling effective navigation through challenging terrain and various obstacles at high speed. Our controllers are integrated into a large-scale urban navigation system and validated by autonomous, kilometer-scale navigation missions conducted in Zurich, Switzerland, and Seville, Spain. These missions demonstrate the system's robustness and adaptability, underscoring the importance of integrated control systems in achieving seamless navigation in complex environments. Our findings support the feasibility of wheeled-legged robots and hierarchical RL for autonomous navigation, with implications for last-mile delivery and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助冰与火采纳,获得10
刚刚
1秒前
hsadu发布了新的文献求助10
2秒前
2秒前
123发布了新的文献求助30
2秒前
高大楼房发布了新的文献求助10
3秒前
平淡的洪纲完成签到,获得积分10
4秒前
4秒前
cis2014发布了新的文献求助150
4秒前
5秒前
摘星012完成签到,获得积分10
5秒前
思源应助TANG采纳,获得10
6秒前
6秒前
Lucas应助晶晶采纳,获得10
6秒前
6秒前
上官若男应助Chemvenus采纳,获得10
7秒前
8秒前
寒酥关注了科研通微信公众号
8秒前
9秒前
9秒前
8R60d8应助Dai采纳,获得10
9秒前
金金发布了新的文献求助10
11秒前
达布溜发布了新的文献求助10
11秒前
思思完成签到,获得积分10
12秒前
water应助沉默的凝荷采纳,获得10
12秒前
12秒前
NexusExplorer应助陈越采纳,获得10
13秒前
难过谷丝完成签到,获得积分20
14秒前
15秒前
16秒前
16秒前
未若柳絮因风起完成签到,获得积分10
16秒前
文献自由发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
和谐钧完成签到,获得积分10
18秒前
简默发布了新的文献求助10
19秒前
20秒前
顾矜应助邢文瑞采纳,获得10
20秒前
生生发布了新的文献求助10
21秒前
王十二发布了新的文献求助10
21秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871187
求助须知:如何正确求助?哪些是违规求助? 3413299
关于积分的说明 10683969
捐赠科研通 3137766
什么是DOI,文献DOI怎么找? 1731163
邀请新用户注册赠送积分活动 834643
科研通“疑难数据库(出版商)”最低求助积分说明 781250