Benchmarking clinical risk prediction algorithms with ensemble machine learning for the noninvasive diagnosis of liver fibrosis in NAFLD

标杆管理 机器学习 算法 人工智能 医学 计算机科学 集成学习 内科学 肝纤维化 纤维化 业务 营销
作者
Vivek Charu,Jane W. Liang,Ajitha Mannalithara,Allison J. Kwong,Lü Tian,W. Ray Kim
出处
期刊:Hepatology [Wiley]
卷期号:80 (5): 1184-1195 被引量:19
标识
DOI:10.1097/hep.0000000000000908
摘要

Background and Aims: Ensemble machine-learning methods, like the superlearner, combine multiple models into a single one to enhance predictive accuracy. Here we explore the potential of the superlearner as a benchmarking tool for clinical risk prediction, illustrating the approach to identifying significant liver fibrosis among patients with NAFLD. Approach and Results: We used 23 demographic/clinical variables to train superlearner(s) on data from the NASH-clinical research network observational study (n = 648) and validated models with data from the FLINT trial (n = 270) and National Health and Nutrition Examination Survey (NHANES) participants with NAFLD (n = 1244). Comparing the superlearner’s performance to existing models (Fibrosis-4 [FIB-4], NAFLD fibrosis score, Forns, AST to Platelet Ratio Index [APRI], BARD, and Steatosis-Associated Fibrosis Estimator [SAFE]), it exhibited strong discriminative ability in the FLINT and NHANES validation sets, with AUCs of 0.79 (95% CI: 0.73–0.84) and 0.74 (95% CI: 0.68–0.79) respectively. Conclusions: Notably, the SAFE score performed similarly to the superlearner, both of which outperformed FIB-4, APRI, Forns, and BARD scores in the validation data sets. Surprisingly, the superlearner derived from 12 base models matched the performance of one with 90 base models. Overall, the superlearner, being the “best-in-class” machine-learning predictor, excelled in detecting fibrotic NASH, and this approach can be used to benchmark the performance of conventional clinical risk prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyz完成签到,获得积分10
刚刚
刚刚
sdahjjyk完成签到,获得积分20
刚刚
1秒前
1秒前
坚定的灭龙应助我想静静采纳,获得10
1秒前
清沧炽魂发布了新的文献求助10
2秒前
Frank发布了新的文献求助10
3秒前
小茉莉发布了新的文献求助10
4秒前
11发布了新的文献求助10
6秒前
等待黎云发布了新的文献求助10
6秒前
镓氧锌钇铀应助Tail采纳,获得20
7秒前
Jasper应助morena采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
芦毛小怪物完成签到,获得积分10
8秒前
Dasein完成签到 ,获得积分10
8秒前
9秒前
Frank完成签到,获得积分10
9秒前
9秒前
CodeCraft应助XING采纳,获得10
10秒前
neinei完成签到,获得积分10
10秒前
uupp完成签到,获得积分10
10秒前
Emma完成签到,获得积分10
10秒前
JJ完成签到,获得积分10
10秒前
福路完成签到 ,获得积分10
10秒前
wsazah完成签到,获得积分10
11秒前
邱化兴完成签到,获得积分10
12秒前
13秒前
哈哈哈哈哈哈完成签到 ,获得积分10
13秒前
13秒前
龙腾虎跃完成签到 ,获得积分10
13秒前
xiaojinzi发布了新的文献求助10
15秒前
FY完成签到,获得积分10
15秒前
时尚大白完成签到 ,获得积分10
15秒前
椒盐完成签到,获得积分10
16秒前
东方元语应助冬天该很好采纳,获得20
17秒前
18秒前
18秒前
朴实乐天完成签到,获得积分10
18秒前
7890733发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480763
求助须知:如何正确求助?哪些是违规求助? 4581949
关于积分的说明 14382770
捐赠科研通 4510558
什么是DOI,文献DOI怎么找? 2471862
邀请新用户注册赠送积分活动 1458272
关于科研通互助平台的介绍 1431940