Lower Extremity Growth according to AI Automated Femorotibial Length Measurement on Slot-Scanning Radiographs in Pediatric Patients

医学 射线照相术 口腔正畸科 放射科 核医学 解剖
作者
John R. Zech,Laura Santos,Steven J. Staffa,David Zurakowski,Katherine A. Rosenwasser,Andy Tsai,Diego Jaramillo,Ariane R. Panzer
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1)
标识
DOI:10.1148/radiol.231055
摘要

Background Commonly used pediatric lower extremity growth standards are based on small, dated data sets. Artificial intelligence (AI) enables creation of updated growth standards. Purpose To train an AI model using standing slot-scanning radiographs in a racially diverse data set of pediatric patients to measure lower extremity length and to compare expected growth curves derived using AI measurements to those of the conventional Anderson-Green method. Materials and Methods This retrospective study included pediatric patients aged 0-21 years who underwent at least two slot-scanning radiographs in routine clinical care between August 2015 and February 2022. A Mask Region-based Convolutional Neural Network was trained to segment the femur and tibia on radiographs and measure total leg, femoral, and tibial length; accuracy was assessed with mean absolute error. AI measurements were used to create quantile polynomial regression femoral and tibial growth curves, which were compared with the growth curves of the Anderson-Green method for coverage based on the central 90% of the estimated growth distribution. Results In total, 1874 examinations in 523 patients (mean age, 12.7 years ± 2.8 [SD]; 349 female patients) were included; 40% of patients self-identified as White and not Hispanic or Latino, and the remaining 60% self-identified as belonging to a different racial or ethnic group. The AI measurement training, validation, and internal test sets included 114, 25, and 64 examinations, respectively. The mean absolute errors of AI measurements of the femur, tibia, and lower extremity in the test data set were 0.25, 0.27, and 0.33 cm, respectively. All 1874 examinations were used to generate growth curves. AI growth curves more accurately represented lower extremity growth in an external test set (
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
刚刚
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
丘比特应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
JamesPei应助HD采纳,获得30
1秒前
科研通AI2S应助钱念波采纳,获得10
5秒前
6秒前
6秒前
黑黑发布了新的文献求助10
8秒前
可爱多完成签到,获得积分10
9秒前
嗯很好完成签到,获得积分20
10秒前
嗯很好发布了新的文献求助10
12秒前
WWWj发布了新的文献求助10
12秒前
辞却完成签到,获得积分10
13秒前
jenningseastera应助Bin_Liu采纳,获得10
14秒前
15秒前
16秒前
黑黑完成签到,获得积分20
18秒前
冰魂应助朱向阳采纳,获得20
20秒前
风声亦寒发布了新的文献求助10
21秒前
Zhuzhu完成签到 ,获得积分10
23秒前
24秒前
24秒前
24秒前
WWWj完成签到,获得积分20
27秒前
景清发布了新的文献求助10
29秒前
科研通AI5应助芷莯采纳,获得10
29秒前
Trent发布了新的文献求助10
29秒前
Endeavor完成签到,获得积分10
30秒前
李健应助嗯很好采纳,获得10
36秒前
生动映容发布了新的文献求助10
36秒前
科目三应助沉静幻香采纳,获得20
37秒前
124完成签到,获得积分10
38秒前
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782042
求助须知:如何正确求助?哪些是违规求助? 3327527
关于积分的说明 10231993
捐赠科研通 3042473
什么是DOI,文献DOI怎么找? 1669990
邀请新用户注册赠送积分活动 799539
科研通“疑难数据库(出版商)”最低求助积分说明 758825