Advancing cross-subject olfactory EEG recognition: A novel framework for collaborative multimodal learning between human-machine

计算机科学 嗅觉 人工智能 气味 感觉系统 嗅觉系统 模式识别(心理学) 机器学习 心理学 神经科学
作者
Xiuxin Xia,Yuchen Guo,Yanwei Wang,Yuchao Yang,Yan Shi,Hong Men
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:250: 123972-123972 被引量:8
标识
DOI:10.1016/j.eswa.2024.123972
摘要

Odor sensory evaluation is broadly applied in food, clothing, cosmetics, and other fields. Traditional artificial sensory evaluation has poor repeatability, and the machine olfaction represented by the electronic nose (E-nose) is difficult to reflect human feelings. Olfactory electroencephalogram (EEG) contains features associated with human olfactory preference, which has unique advantages in odor sensory evaluation. However, the difficulty of cross-subject olfactory EEG recognition dramatically limits its application. In this paper, a human–machine collaborative multimodal learning method is proposed for cross-subject olfactory preference recognition. Firstly, the olfactory EEG and E-nose multimodal data acquisition and preprocessing paradigms are established. Secondly, a complementary multimodal data mining strategy is proposed to effectively mine the individual and common features representing subjects' olfactory preferences from multimodal data. Finally, the cross-subject olfactory preference recognition is achieved in 24 subjects by fusing the extracted common and individual features, and the recognition effect is superior to the state-of-the-art recognition methods. Furthermore, the advantages of the proposed method in cross-subject olfactory preference recognition indicate its potential for practical odor evaluation applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李志全完成签到 ,获得积分10
3秒前
tingtingzhang完成签到 ,获得积分10
4秒前
4秒前
7秒前
8秒前
颜陌完成签到,获得积分10
9秒前
w934420513发布了新的文献求助30
9秒前
power完成签到,获得积分10
10秒前
10秒前
顾矜应助清新的音响采纳,获得10
10秒前
慕青应助huang采纳,获得10
11秒前
zlsf应助L_online采纳,获得50
11秒前
13秒前
14秒前
JamesPei应助科研通管家采纳,获得10
16秒前
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
t通应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
17秒前
xs小仙女应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
18秒前
18秒前
DoctorX发布了新的文献求助10
21秒前
24秒前
24秒前
25秒前
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323857
关于积分的说明 10216183
捐赠科研通 3039074
什么是DOI,文献DOI怎么找? 1667762
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366