清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Noninvasive Artificial Intelligence System for Early Predicting Residual Cancer Burden during Neoadjuvant Chemotherapy in Breast Cancer

医学 乳腺癌 癌症 肿瘤科 磁共振成像 内科学 阶段(地层学) 队列 接收机工作特性 放射科 古生物学 生物
作者
Wei Li,Yühong Huang,Teng Zhu,Yimin Zhang,Xingxing Zheng,Tingfeng Zhang,Ying-Yi Lin,Zhi‐Yong Wu,Zaiyi Liu,Ying Lin,Guolin Ye,Kun Wang
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
被引量:4
标识
DOI:10.1097/sla.0000000000006279
摘要

Objective: To develop an artificial intelligence (AI) system for the early prediction of residual cancer burden (RCB) scores during neoadjuvant chemotherapy (NAC) in breast cancer. Summary Background Data: RCB III indicates drug resistance in breast cancer, and early detection methods are lacking. Methods: This study enrolled 1048 patients with breast cancer from four institutions, who were all receiving NAC. Magnetic resonance images were collected at the pre- and mid-NAC stages, and radiomics and deep learning features were extracted. A multitask AI system was developed to classify patients into three groups (RCB 0-I, II, and III ) in the primary cohort (PC, n=335). Feature selection was conducted using the Mann-Whitney U- test, Spearman analysis, least absolute shrinkage and selection operator regression, and the Boruta algorithm. Single-modality models were developed followed by model integration. The AI system was validated in three external validation cohorts. (EVCs, n=713). Results: Among the patients, 442 (42.18%) were RCB 0-I, 462 (44.08%) were RCB II and 144 (13.74%) were RCB III. Model-I achieved an area under the curve (AUC) of 0.975 in the PC and 0.923 in the EVCs for differentiating RCB III from RCB 0-II. Model-II distinguished RCB 0-I from RCB II-III, with an AUC of 0.976 in the PC and 0.910 in the EVCs. Subgroup analysis confirmed that the AI system was consistent across different clinical T stages and molecular subtypes. Conclusions: The multitask AI system offers a noninvasive tool for the early prediction of RCB scores in breast cancer, supporting clinical decision-making during NAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
文学痞发布了新的文献求助10
42秒前
文学痞完成签到,获得积分10
54秒前
1分钟前
SL发布了新的文献求助10
1分钟前
Ji完成签到,获得积分10
1分钟前
健康的大船完成签到 ,获得积分10
2分钟前
SL完成签到,获得积分10
2分钟前
bubble完成签到 ,获得积分10
2分钟前
Young完成签到 ,获得积分10
2分钟前
liguanyu1078完成签到,获得积分10
2分钟前
3分钟前
情怀应助科研通管家采纳,获得10
4分钟前
春风沂水完成签到,获得积分10
4分钟前
zzxx完成签到,获得积分10
5分钟前
科研通AI5应助春风沂水采纳,获得10
5分钟前
林梓完成签到 ,获得积分10
5分钟前
华仔应助科研通管家采纳,获得10
6分钟前
高高的从波完成签到,获得积分10
7分钟前
7分钟前
Hygge发布了新的文献求助10
7分钟前
zyjsunye完成签到 ,获得积分0
7分钟前
lyx2010完成签到,获得积分10
7分钟前
稻子完成签到 ,获得积分10
8分钟前
田様应助科研通管家采纳,获得10
8分钟前
在水一方应助科研通管家采纳,获得10
8分钟前
JSEILWQ完成签到 ,获得积分10
9分钟前
9分钟前
Hello应助天空之城采纳,获得10
10分钟前
10分钟前
天空之城发布了新的文献求助10
10分钟前
脑洞疼应助科研通管家采纳,获得10
10分钟前
11分钟前
anitachiu1104发布了新的文献求助10
11分钟前
实力不允许完成签到 ,获得积分10
11分钟前
12分钟前
12分钟前
YifanWang应助科研通管家采纳,获得20
12分钟前
李健应助13508104971采纳,获得10
12分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777624
求助须知:如何正确求助?哪些是违规求助? 3323001
关于积分的说明 10212874
捐赠科研通 3038350
什么是DOI,文献DOI怎么找? 1667372
邀请新用户注册赠送积分活动 798106
科研通“疑难数据库(出版商)”最低求助积分说明 758229