Motif-Aware miRNA-Disease Association Prediction via Hierarchical Attention Network

计算机科学 主题(音乐) 水准点(测量) 机器学习 计算生物学 人工智能 生物网络 小RNA 数据挖掘 生物信息学 基因 生物 遗传学 声学 物理 大地测量学 地理
作者
Bo-Wei Zhao,Yi-Zhou He,Xiaorui Su,Yue Yang,Guodong Li,Yu‐An Huang,Pengwei Hu,Zhu‐Hong You,Lun Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 4281-4294 被引量:21
标识
DOI:10.1109/jbhi.2024.3383591
摘要

As post-transcriptional regulators of gene expression, micro-ribonucleic acids (miRNAs) are regarded as potential biomarkers for a variety of diseases. Hence, the prediction of miRNA-disease associations (MDAs) is of great significance for an in-depth understanding of disease pathogenesis and progression. Existing prediction models are mainly concentrated on incorporating different sources of biological information to perform the MDA prediction task while failing to consider the fully potential utility of MDA network information at the motif-level. To overcome this problem, we propose a novel motif-aware MDA prediction model, namely MotifMDA, by fusing a variety of high- and low-order structural information. In particular, we first design several motifs of interest considering their ability to characterize how miRNAs are associated with diseases through different network structural patterns. Then, MotifMDA adopts a two-layer hierarchical attention to identify novel MDAs. Specifically, the first attention layer learns high-order motif preferences based on their occurrences in the given MDA network, while the second one learns the final embeddings of miRNAs and diseases through coupling high- and low-order preferences. Experimental results on two benchmark datasets have demonstrated the superior performance of MotifMDA over several state-of-the-art prediction models. This strongly indicates that accurate MDA prediction can be achieved by relying solely on MDA network information. Furthermore, our case studies indicate that the incorporation of motif-level structure information allows MotifMDA to discover novel MDAs from different perspectives. The data and codes are available at https://github.com/stevejobws/MotifMDA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Catherine发布了新的文献求助10
1秒前
dwd完成签到,获得积分10
1秒前
小趴菜完成签到,获得积分10
2秒前
2秒前
不忘初心发布了新的文献求助10
2秒前
3秒前
4秒前
猫先生发布了新的文献求助10
5秒前
nlm发布了新的文献求助10
6秒前
苏打发布了新的文献求助20
7秒前
zzz发布了新的文献求助10
7秒前
Catherine完成签到,获得积分10
7秒前
8秒前
深海鳕鱼子完成签到,获得积分10
9秒前
yzm发布了新的文献求助10
9秒前
10秒前
orixero应助江南采纳,获得10
10秒前
不忘初心完成签到,获得积分10
10秒前
yqm发布了新的文献求助10
11秒前
12秒前
吴子冰发布了新的文献求助10
13秒前
科研通AI5应助大兵采纳,获得10
13秒前
15秒前
高贵白竹发布了新的文献求助10
15秒前
16秒前
无骨鸡爪不长胖应助yzm采纳,获得10
17秒前
18秒前
咖咖KAKA完成签到,获得积分10
19秒前
上官若男应助zzz采纳,获得10
20秒前
高贵白竹完成签到,获得积分20
20秒前
edsenone发布了新的文献求助10
21秒前
22秒前
ding应助吴子冰采纳,获得10
23秒前
小蘑菇应助吴子冰采纳,获得10
23秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
zhangqq完成签到,获得积分10
24秒前
26秒前
27秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864635
求助须知:如何正确求助?哪些是违规求助? 3407023
关于积分的说明 10652456
捐赠科研通 3131028
什么是DOI,文献DOI怎么找? 1726757
邀请新用户注册赠送积分活动 831983
科研通“疑难数据库(出版商)”最低求助积分说明 780078