Characterizing the spike timing of a chaotic laser by using ordinal analysis and machine learning

计算机科学 混乱的 噪音(视频) 熵(时间箭头) 解码方法 Spike(软件开发) 模式识别(心理学) 人工智能 算法 物理 软件工程 量子力学 图像(数学)
作者
B. R. R. Boaretto,Elbert E. N. Macau,Cristina Masoller
出处
期刊:Chaos [American Institute of Physics]
卷期号:34 (4) 被引量:2
标识
DOI:10.1063/5.0193967
摘要

Semiconductor lasers with optical feedback are well-known nonlinear dynamical systems. Under appropriate feedback conditions, these lasers emit optical pulses that resemble neural spikes. Influenced by feedback delay and various noise sources, including quantum spontaneous emission noise, the dynamics are highly stochastic. A good understanding of the spike timing statistics is needed to develop photonic systems capable of using the fast-spiking laser output for novel applications, such as information processing or random number generation. Here we analyze experimental sequences of inter-spike intervals (ISIs) recorded when a sinusoidal signal was applied to the laser current. Different combinations of the DC value and frequency of the signal applied to the laser lead to ISI sequences with distinct statistical properties. This variability prompts an investigation into the relationship between experimental parameters and ISI sequence statistics, aiming to uncover potential encoding methods for optical spikes, since this can open a new way of encoding and decoding information in sequences of optical spikes. By using ordinal analysis and machine learning, we show that the ISI sequences have statistical ordinal properties that are similar to Flicker noise signals, characterized by a parameter α that varies with the signal that was applied to the laser current when the ISIs were recorded. We also show that for this dataset, the (α, permutation entropy) plane is more informative than the (complexity, permutation entropy) plane because it allows better differentiation of ISI sequences recorded under different experimental conditions, as well as better differentiation of original and surrogate ISI sequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jhhk完成签到,获得积分20
刚刚
刚刚
nczpf2010完成签到,获得积分10
1秒前
勇敢的心发布了新的文献求助30
1秒前
Chengcheng发布了新的文献求助10
4秒前
savica发布了新的文献求助10
6秒前
yuni发布了新的文献求助10
6秒前
执着绿草发布了新的文献求助10
7秒前
jhhk发布了新的文献求助10
7秒前
柯曼云完成签到,获得积分10
9秒前
吴衡完成签到,获得积分10
10秒前
我好想睡完成签到,获得积分10
11秒前
11秒前
12秒前
彭于晏应助十一采纳,获得10
13秒前
just_cook完成签到,获得积分10
13秒前
虚幻的大大完成签到,获得积分10
13秒前
14秒前
十七完成签到 ,获得积分10
14秒前
16秒前
satchzhao完成签到,获得积分10
16秒前
慕青应助2jz采纳,获得10
17秒前
17秒前
无物完成签到,获得积分10
17秒前
羊羊羊发布了新的文献求助10
17秒前
18秒前
星空发布了新的文献求助30
18秒前
orixero应助细腻的沂采纳,获得10
19秒前
20秒前
awzzz完成签到,获得积分20
20秒前
华仔应助HanFeiZi采纳,获得10
21秒前
天将明发布了新的文献求助10
21秒前
awzzz发布了新的文献求助10
24秒前
zgt01发布了新的文献求助10
24秒前
25秒前
25秒前
万万完成签到,获得积分10
25秒前
三三发布了新的文献求助10
25秒前
poki发布了新的文献求助10
27秒前
28秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842910
求助须知:如何正确求助?哪些是违规求助? 3384948
关于积分的说明 10538145
捐赠科研通 3105498
什么是DOI,文献DOI怎么找? 1710345
邀请新用户注册赠送积分活动 823598
科研通“疑难数据库(出版商)”最低求助积分说明 774157