Oxygen vacancies-mediated CuO@N-doped carbon nanocomposites for non-radical-dominated photothermal catalytic degradation of contaminants

纳米复合材料 催化作用 氧气 光热治疗 碳纤维 化学工程 单线态氧 材料科学 吸附 化学 光化学 纳米技术 有机化学 复合材料 复合数 工程类
作者
Yi Chen,Yao Dai,Yanwei Li,Zexi Hou,Baoyu Gao,Qinyan Yue,Qian Li
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:389: 136054-136054 被引量:5
标识
DOI:10.1016/j.jclepro.2023.136054
摘要

Efficient molecular oxygen activation (MOA) is a critical step for most of the environmental catalysis applications for generating reactive oxygen species (ROS), which is often limited by the lack of energy to excite electrons. The emergence of photothermal catalyst provides an opportunity to make effective use of solar energy to energize electrons for boosting activation of molecular oxygen. Herein, CuO nanoparticles wrapped into nitrogen-doped carbon nanocomposites ([email protected]) with abundant oxygen vacancies (OVs) were prepared through a facile one-step synthesis using carboxymethyl chitosan hydrogel as a template. The as-obtained [email protected] exhibited excellent photothermal catalytic properties under visible-light irradiation to achieve efficient molecular oxygen activation, thus allowing the effective degradation of bisphenol F (BPF) in complex aqueous environments and actual water matrices. Density functional theory (DFT) calculations reveal that both the enhanced properties of OVs for molecular oxygen adsorption and the accelerated properties of graphitic N for electron transfer contribute significantly to the MOA and charge separation efficiency, resulting in a large amount of ROS. Molecular oxygen is converted to superoxide (·O2−) and ultimately to singlet oxygen (1O2), which is the dominant ROS responsible for contaminants degradation. Additionally, a photothermal catalytic degradation pathway of BPF was proposed based on the product detection and theoretical calculations. This study provides an effective method for the in-situ fabrication of [email protected] carbon nanocomposite photothermal catalysts and elucidates the mechanism of the photothermal catalytic activation of molecular oxygen for contaminants degradation, providing a promising approach for making effective use of solar energy for environmental remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恩物来说完成签到 ,获得积分10
刚刚
1秒前
3秒前
你以为你是谁完成签到,获得积分10
4秒前
4秒前
4秒前
李健的小迷弟应助hugeng采纳,获得10
4秒前
柚哦发布了新的文献求助10
4秒前
bkagyin应助我想大声告诉你采纳,获得10
7秒前
8秒前
8秒前
9秒前
yin发布了新的文献求助10
9秒前
多情蓝发布了新的文献求助10
9秒前
10秒前
www发布了新的文献求助10
10秒前
田様应助Ayaya采纳,获得10
10秒前
852应助李卓采纳,获得10
10秒前
aaa完成签到,获得积分10
11秒前
TRY关闭了TRY文献求助
11秒前
柚哦完成签到,获得积分10
12秒前
12秒前
无心的寄灵完成签到,获得积分10
13秒前
jgpiao发布了新的文献求助10
14秒前
11发布了新的文献求助10
15秒前
jj158发布了新的文献求助30
15秒前
sean118完成签到 ,获得积分10
16秒前
16秒前
16秒前
周芷天完成签到,获得积分10
17秒前
酷波er应助快来和姐妹玩采纳,获得10
18秒前
思源应助吴zzzz采纳,获得10
19秒前
共享精神应助Thien采纳,获得10
20秒前
22秒前
23秒前
归尘应助young采纳,获得30
23秒前
科研通AI5应助lz采纳,获得10
23秒前
健康的大门完成签到,获得积分10
24秒前
若若1223完成签到 ,获得积分10
24秒前
无名花生完成签到 ,获得积分0
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781731
求助须知:如何正确求助?哪些是违规求助? 3327303
关于积分的说明 10230369
捐赠科研通 3042188
什么是DOI,文献DOI怎么找? 1669800
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792