CFHA-Net: A polyp segmentation method with cross-scale fusion strategy and hybrid attention

计算机科学 分割 背景(考古学) 人工智能 特征(语言学) 编码器 增采样 联营 模式识别(心理学) 尺度空间分割 图像分割 图像(数学) 古生物学 语言学 哲学 生物 操作系统
作者
Lei Yang,Chenxu Zhai,Yanhong Liu,Hongnian Yu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:164: 107301-107301 被引量:16
标识
DOI:10.1016/j.compbiomed.2023.107301
摘要

Colorectal cancer is a prevalent disease in modern times, with most cases being caused by polyps. Therefore, the segmentation of polyps has garnered significant attention in the field of medical image segmentation. In recent years, the variant network derived from the U-Net network has demonstrated a good segmentation effect on polyp segmentation challenges. In this paper, a polyp segmentation model, called CFHA-Net, is proposed, that combines a cross-scale feature fusion strategy and a hybrid attention mechanism. Inspired by feature learning, the encoder unit incorporates a cross-scale context fusion (CCF) module that performs cross-layer feature fusion and enhances the feature information of different scales. The skip connection is optimized by proposed triple hybrid attention (THA) module that aggregates spatial and channel attention features from three directions to improve the long-range dependence between features and help identify subsequent polyp lesion boundaries. Additionally, a dense-receptive feature fusion (DFF) module, which combines dense connections and multi-receptive field fusion modules, is added at the bottleneck layer to capture more comprehensive context information. Furthermore, a hybrid pooling (HP) module and a hybrid upsampling (HU) module are proposed to help the segmentation network acquire more contextual features. A series of experiments have been conducted on three typical datasets for polyp segmentation (CVC-ClinicDB, Kvasir-SEG, EndoTect) to evaluate the effectiveness and generalization of the proposed CFHA-Net. The experimental results demonstrate the validity and generalization of the proposed method, with many performance metrics surpassing those of related advanced segmentation networks. Therefore, proposed CFHA-Net could present a promising solution to the challenges of polyp segmentation in medical image analysis. The source code of proposed CFHA-Net is available at https://github.com/CXzhai/CFHA-Net.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
洋葱发布了新的文献求助10
2秒前
研友_VZG7GZ应助文艺的土豆采纳,获得10
3秒前
菠萝派发布了新的文献求助10
4秒前
舒心丹亦完成签到,获得积分10
4秒前
5秒前
6秒前
春风知我意完成签到,获得积分10
6秒前
舒心丹亦发布了新的文献求助10
7秒前
3230600402发布了新的文献求助10
7秒前
7秒前
尹沐完成签到 ,获得积分10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
小马甲应助微光采纳,获得10
8秒前
欢呼的牛排完成签到,获得积分10
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
乐观寻绿应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
Singularity应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得30
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
Singularity应助科研通管家采纳,获得10
9秒前
李健的小迷弟应助林夏采纳,获得10
9秒前
11秒前
nikki发布了新的文献求助10
12秒前
自信紫夏完成签到,获得积分20
14秒前
可爱多完成签到 ,获得积分10
14秒前
16秒前
日天的马铃薯完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
迟暮发布了新的文献求助10
19秒前
丙子哥发布了新的文献求助10
20秒前
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800254
求助须知:如何正确求助?哪些是违规求助? 3345547
关于积分的说明 10325792
捐赠科研通 3061969
什么是DOI,文献DOI怎么找? 1680716
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557