Multi-View Graph Contrastive Learning via Adaptive Channel Optimization for Depression Detection in EEG Signals

可解释性 计算机科学 脑电图 人工智能 模式识别(心理学) 冗余(工程) 图形 特征提取 机器学习 理论计算机科学 心理学 精神科 操作系统
作者
Shuangyong Zhang,Hong Wang,Zixi Zheng,Tianyu Liu,Weixin Li,Zishan Zhang,Yanshen Sun
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:33 (11) 被引量:9
标识
DOI:10.1142/s0129065723500557
摘要

Automated detection of depression using Electroencephalogram (EEG) signals has become a promising application in advanced bioinformatics technology. Although current methods have achieved high detection performance, several challenges still need to be addressed: (1) Previous studies do not consider data redundancy when modeling multi-channel EEG signals, resulting in some unrecognized noise channels remaining. (2) Most works focus on the functional connection of EEG signals, ignoring their spatial proximity. The spatial topological structure of EEG signals has not been fully utilized to capture more fine-grained features. (3) Prior depression detection models fail to provide interpretability. To address these challenges, this paper proposes a new model, Multi-view Graph Contrastive Learning via Adaptive Channel Optimization (MGCL-ACO) for depression detection in EEG signals. Specifically, the proposed model first selects the critical channels by maximizing the mutual information between tracks and labels of EEG signals to eliminate data redundancy. Then, the MGCL-ACO model builds two similarity metric views based on functional connectivity and spatial proximity. MGCL-ACO constructs the feature extraction module by graph convolutions and contrastive learning to capture more fine-grained features of different perspectives. Finally, our model provides interpretability by visualizing a brain map related to the significance scores of the selected channels. Extensive experiments have been performed on public datasets, and the results show that our proposed model outperforms the most advanced baselines. Our proposed model not only provides a promising approach for automated depression detection using optimal EEG signals but also has the potential to improve the accuracy and interpretability of depression diagnosis in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苦哈哈完成签到,获得积分10
刚刚
香蕉觅云应助Darius采纳,获得10
2秒前
2秒前
panana发布了新的文献求助10
2秒前
SOLKATT完成签到,获得积分10
3秒前
llll发布了新的文献求助10
3秒前
AuH应助11采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
6秒前
吃饭吧发布了新的文献求助30
6秒前
shuan发布了新的文献求助10
6秒前
7秒前
Yogita发布了新的文献求助10
9秒前
9秒前
北北发布了新的文献求助10
9秒前
风笛发布了新的文献求助10
9秒前
12秒前
舒适山槐发布了新的文献求助10
13秒前
14秒前
英俊的铭应助北北采纳,获得10
14秒前
ggg发布了新的文献求助10
14秒前
ewetylgkhlj完成签到,获得积分10
15秒前
鞭霆发布了新的文献求助10
15秒前
17秒前
馆长应助地学韦丰吉司长采纳,获得50
18秒前
朱佳玉发布了新的文献求助10
20秒前
NexusExplorer应助周周采纳,获得10
22秒前
zzz关注了科研通微信公众号
22秒前
23秒前
赫灵竹完成签到,获得积分10
23秒前
24秒前
24秒前
Sea_U应助俏皮代丝采纳,获得10
24秒前
fifteen应助愤怒的毛文采纳,获得10
24秒前
汉堡包应助bacteria采纳,获得10
25秒前
Hello应助ggg采纳,获得10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4493425
求助须知:如何正确求助?哪些是违规求助? 3946571
关于积分的说明 12237247
捐赠科研通 3603904
什么是DOI,文献DOI怎么找? 1982176
邀请新用户注册赠送积分活动 1018825
科研通“疑难数据库(出版商)”最低求助积分说明 911490