Multi-View Graph Contrastive Learning via Adaptive Channel Optimization for Depression Detection in EEG Signals

可解释性 计算机科学 脑电图 人工智能 模式识别(心理学) 冗余(工程) 图形 特征提取 机器学习 理论计算机科学 心理学 操作系统 精神科
作者
Shuangyong Zhang,Hong Wang,Zixi Zheng,Tianyu Liu,Weixin Li,Zishan Zhang,Yanshen Sun
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:33 (11): 2350055-2350055 被引量:11
标识
DOI:10.1142/s0129065723500557
摘要

Automated detection of depression using Electroencephalogram (EEG) signals has become a promising application in advanced bioinformatics technology. Although current methods have achieved high detection performance, several challenges still need to be addressed: (1) Previous studies do not consider data redundancy when modeling multi-channel EEG signals, resulting in some unrecognized noise channels remaining. (2) Most works focus on the functional connection of EEG signals, ignoring their spatial proximity. The spatial topological structure of EEG signals has not been fully utilized to capture more fine-grained features. (3) Prior depression detection models fail to provide interpretability. To address these challenges, this paper proposes a new model, Multi-view Graph Contrastive Learning via Adaptive Channel Optimization (MGCL-ACO) for depression detection in EEG signals. Specifically, the proposed model first selects the critical channels by maximizing the mutual information between tracks and labels of EEG signals to eliminate data redundancy. Then, the MGCL-ACO model builds two similarity metric views based on functional connectivity and spatial proximity. MGCL-ACO constructs the feature extraction module by graph convolutions and contrastive learning to capture more fine-grained features of different perspectives. Finally, our model provides interpretability by visualizing a brain map related to the significance scores of the selected channels. Extensive experiments have been performed on public datasets, and the results show that our proposed model outperforms the most advanced baselines. Our proposed model not only provides a promising approach for automated depression detection using optimal EEG signals but also has the potential to improve the accuracy and interpretability of depression diagnosis in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Stella应助mutong采纳,获得10
2秒前
2秒前
2秒前
彭于晏应助McSee采纳,获得30
2秒前
仓颉发布了新的文献求助10
3秒前
孙朱珠发布了新的文献求助10
4秒前
柏小霜完成签到,获得积分10
4秒前
4秒前
6秒前
7秒前
8秒前
8秒前
gelinhao完成签到,获得积分0
8秒前
niNe3YUE应助柳青采纳,获得10
8秒前
平淡乐儿完成签到,获得积分10
9秒前
朝暮完成签到 ,获得积分10
9秒前
CipherSage应助mutong采纳,获得10
9秒前
9秒前
9秒前
冷艳的忆霜完成签到 ,获得积分10
10秒前
10秒前
我是哈哈超人完成签到,获得积分10
11秒前
仓颉完成签到,获得积分10
12秒前
淡然的青旋完成签到 ,获得积分10
12秒前
上官若男应助allyceacheng采纳,获得10
12秒前
12秒前
12秒前
啦啦啦关注了科研通微信公众号
13秒前
Zen发布了新的文献求助10
14秒前
sunyanghu369发布了新的文献求助10
14秒前
14秒前
14秒前
张础锐发布了新的文献求助10
16秒前
17秒前
来个肉盒子完成签到 ,获得积分10
17秒前
18秒前
Snow发布了新的文献求助10
18秒前
小青椒应助Jere采纳,获得20
19秒前
19秒前
ZPC发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556581
求助须知:如何正确求助?哪些是违规求助? 4641312
关于积分的说明 14664811
捐赠科研通 4583182
什么是DOI,文献DOI怎么找? 2514032
邀请新用户注册赠送积分活动 1488525
关于科研通互助平台的介绍 1459168